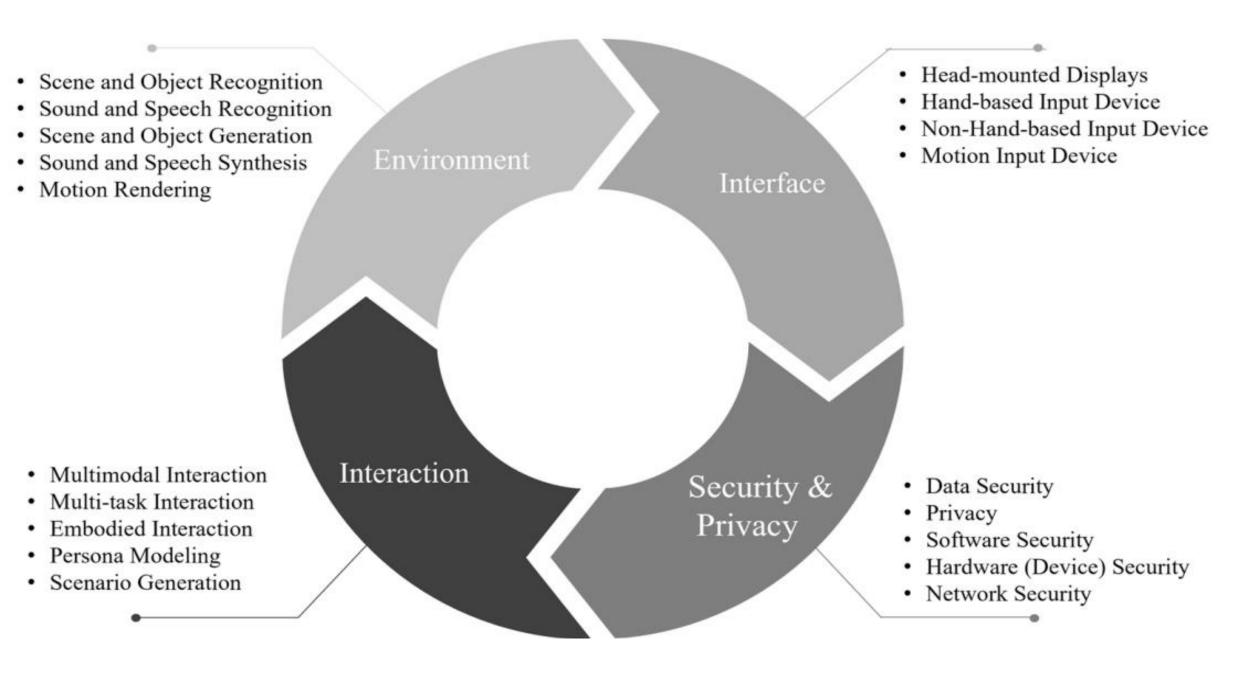
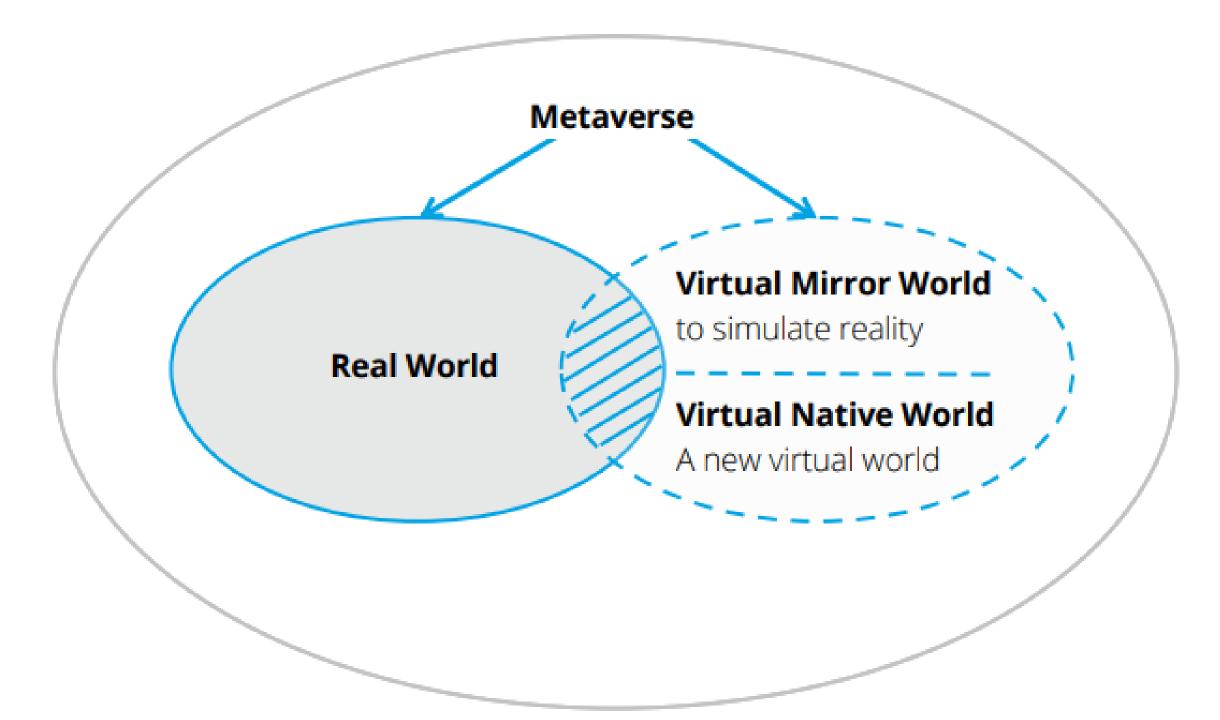
Security in the Metaverse: An Analysis of Threats and Countermeasures


Maedeh Mosharraf


Faculty of computer science and engineering, Shahid Beheshti University

Email: m_mosharraf@sbu.ac.ir

Present stage

Further

Metaverse Drivers

NetworksRollout of 5G and fibre to more communities

Economic enablersRise of cryptocurrencies and NFTs

Digital infrastructure Cloud, blockchain, etc

Virtual platforms e.g., Sandbox, Unreal Engine, Roblox, Decentraland

Access technology AR/VR headsets, browsers, smartphones

- From online work and education now conducted through video calls, to virtual socials and events on video game platforms, the COVID-19 pandemic has supercharged the role of digital in our lives.
- This has also improved the digital literacy of people across generations, leading to a level of comfort with new platforms and technologies, and an added appetite to try new experiences.

Firm initiatives

New products, patents, processes, etc., launched by leading technology, OEM, entertainment and media companies

Immersive experiences

Live sporting games, concerts, and social events broadcasted and hosted by leading sports agencies and platforms

M&A and partnerships

Major partnerships and acquisitions across technology, gaming, and entertainment players globally

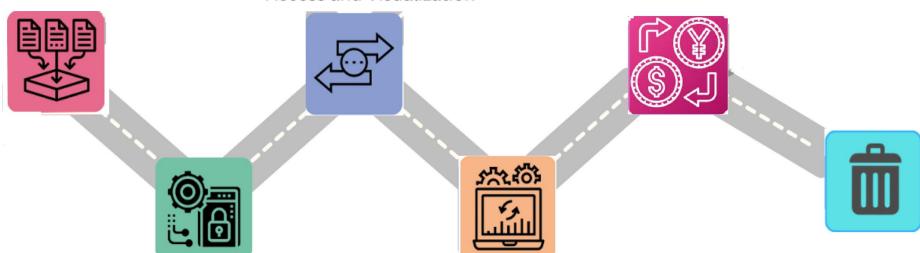
Virtual storefronts

Leading luxury and consumer brands providing offerings through stores in virtual worlds across industries and categories

Metaverse Characteristic	Tech Cluster	Role	Tech Category
Immersive Experience, High Simulation	Simulation Interactive Technology	Path to the Metaverse Virtual-Real Interface	XR Hologram Technology BCI Sensing Technology
Real-time Operation, Multi-dimensional Interaction	Artificial Intelligence	Algorithm Support Content Production	Machine Computer Learning Vision Digital Smart NLP Twin
Efficient Content Production	Creation & Interaction Platform	The Most Intuitive Way to Present Virtual-Real interface	Game Engine 3D Engine Real-Time Rendering Digital Twin
Identity & Rules	Blockchain Technology (including NFTs)	The Core Code of the Metaverse Identity and Authen— tication Mechanisms	Distributed Consensus Data Storage Mechanism Transmission & Distributed Timestamp Authentication Ledger Technology Mechanism
Ensure Large-scale Users Stay Online	Network & Computing Technology	Basic Support Network Environ- ment & Data Processing	5G/6G Technology Edge Computing Cloud Computing IoT Technology

Secure Data Lifecycle in Metaverse

Acquisition


- Techniques and methods
- Partnerships for data collection
- Impact of Technology & big data

Transformation

- Communication & Transparency
- Coordination
- Cost & Maintenance
- · Access and Visualization

Exchange

New Method tools
 & Uses

Storage

- Storage cost & Maintenance
- Storage & Retention Policies
- Method For Data Security

Process

- Techniques
- Data Quality Metrics

Destruction

 Data statute of limitations

Existing Threats in Data Acquisition

- Vulnerability of edge nodes
 - Disabling edge nodes
 - Turning edge nodes to botnet to carry out DDoS attack
 - Using edge nodes for eavesdropping
 - Modifying input data before sending
 - Uncalibrated wearable sensors
 - Deepfake and impersonation attack
- Input data tampering
 - False data injection
 - Replay attack
 - Zero dynamics attack
- Malicious/ low quality UGC
 - Decreasing the quality of user experience
 - Publishing malicious script

Existing Threats in Data Storage

- SPoF in centralized data storage
- Blockchain vulnerability
- Cloud vulnerability
- Breaking classical cryptography
- Side channel attack

Existing Threats in Data Transfer

- Data leakage
 - Eavesdropping
 - Man in the middle
 - Packet sniffing
 - Data interception
- Intrusion
 - DDoS
 - Syn flood
 - Packet flooding
 - Packet sniffing
 - Packet tampering
 - Ping sweeping
 - Eavesdropping

Existing Threats in Data Processing

- Attacking deep learning models
- Attacking federated learning models
 - Data poisoning
 - Attacking the effective edge nodes
 - Inference attacks
 - GAN attack
- Malware

Existing Threats in Data Transaction

- Digital twin vulnerabilities
 - Digital twin data leakage
 - Digital twin unauthorized tampering
 - Information theft from digital twin
- Digital asset vulnerabilities
 - Threat to privacy
 - Theft of asset ownership
 - Attacking smart contract
- Man in the room and VR worm

Existing Threats in Data Destruction

- Malicious data non removal due to blockchain immutability
- Metaverse governance by handful organization

Secure Data Lifecycle in Metaverse

Acquisition

- Techniques and methods
- Partnerships for data collection
- Impact of Technology & big data

Transformation

- Communication & Transparency
- Coordination
- Cost & Maintenance
- · Access and Visualization

Exchange

New Method tools
 & Uses

Storage

- Storage cost & Maintenance
- Storage & Retention Policies
- Method For Data Security

Process

- Techniques
- Data Quality Metrics

Destruction

 Data statute of limitations

Data Acquisition Security Countermeasu res

- Authentication and integrity verification of input nodes
- Management of edge nodes
- Input quality assurance
- Ensuring data provenance through the utilization of IoT techniques

Data Storage Security Countermeasures

- Data protection laws
- Blockchain utilizing quantum resistance encryption
- Achieving scalability while ensuring blockchain security
- Securing stored data in cloud

Data Transfer Security Countermeasures

- Using digital twins
- Encryption and access control mechanisms

Data Processing Security Countermeasu res

- Resistance to adversarial models/ inputs
- Segmentation of the XR processing environment
- Malware detection

Data Exchange Security Countermeasu res

- Distributed ledger infrastructure
- Protecting digital footprints
- Protecting digital twins

Data Destruction Security Countermeasu res

- Removing from blockchain
- Secure removing from cloud or central database

Other Security Challenges

- New data security challenges
- Extremely large and diverse data volume
- Algorithmic challenges: Bias, lack of transparency, and vulnerability
- Interactions with synthetic content and fake users
- The "Darkverse" concept and its heightened hazards

