

QuMixnet: A Quantum-Safe Mixnet Protocol

S. Mohamamd Dibaji, Taraneh Eghlidos, Hossein Pilaram Sharif University of Technology

diba.m222@gmail.com

- Introduction & Motivation
- Related Work
- Our Contributions
 - > 5-Node Example
 - Protocol Overview
 - Key Components & Primitives
 - > Workflow
 - > Security
- Conclusion

- Introduction & Motivation
- Related Work
- Our Contributions
 - > 5-Node Example
 - > Protocol Overview
 - > Key Components & Primitives
 - > Workflow
 - > Security
- Conclusion

Introduction

- ☐ Mixnets: Cryptographic protocols for anonymous communication [Chaum, 1981]
 - Route messages through "mix nodes" to shuffle & obscure senderreceiver links
 - Applications: anonymous messaging, E-voting, ...
- ☐ Challenges:
 - Vulnerable to traffic analysis & powerful adversaries
 - Quantum threats: Shor's algorithm breaks RSA/ECC [Shor, 1994]
- Need: Quantum-resistant mixnets for long-term security & privacy

- Introduction & Motivation
- Related Work
- Our Contributions
 - > 5-Node Example
 - > Protocol Overview
 - Key Components & Primitives
 - > Workflow
 - > Security
- Conclusion

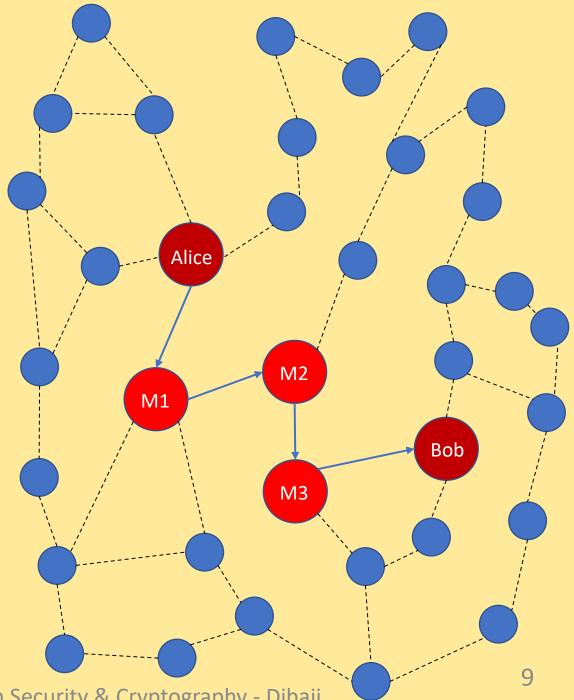
Related Work

- ☐ Classical Mixnets:
 - Mixmaster
 - Loopix
 - Nym: plans PQ upgrade
- **□** PQ Mixnets:
 - Katzenpost: Hybrid Kyber + Sphinx
 - xx.network (cMix): PQ in precomputation
 - Voting-specific: Lattice-based verifiable mixnets (focus on shuffles/ZK proofs)

- Introduction & Motivation
- Related Work
- Our Contributions
 - > 5-Node Example
 - > Protocol Overview
 - Key Components & Primitives
 - > Workflow
 - Security
- Conclusion

Our Contributions

- □ QuMixnet: Fully post-quantum mixnet protocol
 - PQ Primitives: CRYSTALS-Dilithium (signatures), CRYSTALS-Kyber
 (KEM) + AES-GCM
 - P2P Architecture: Every node = sender/receiver/mix (enhances scalability/anonymity)
 - Sender-Determined Onion Routing: Only sender knows full path
 - Traffic Obfuscation: Fixed-size padding, dummies, batch shuffling, ...


□ Advantages:

- Future-proof vs. quantum attacks
- Better scalability/flexibility than non-P2P (e.g., Loopix/Nym)
- Stronger obfuscation than voting mixnets

5-Node Example

: Other nodes

: Other connections

Protocol Overview

☐ Goals:

- Secure secret transmission: Confidentiality, Integrity, Anonymity
- Communication Anonymity: Sender/receiver know each other, but communication hidden from others

□ Key Features:

- Onion routing layered encryption
- P2P: Obscures roles, resists traffic analysis
- Obfuscation: Padding to MSG_SIZE (a fixed size), dummies, batching, ...

Key Components & Primitives

- □ CRYSTALS-Dilithium [Ducas et al. 2018]: Lattice-based signature (sEUF-CMA secure)
 - Signs (secret + IDs + timestamp) for authenticity/integrity
- □ CRYSTALS-Kyber [Bos et al. 2018]: Lattice-based KEM (IND-CCA2 secure)
 - Encapsulates symmetric keys for AES-GCM encryption (efficient for large payloads)
- ☐ Onion Routing: layered encryption; each node decrypts one layer (next hop + payload)

Architecture - P2P Mixnet & Routing

- □ P2P Design: Every node can send/receive/mix
 - No fixed roles: Traffic indistinguishable; resists endpoint correlation
- **□** Sender-Determined Routing:
 - Sender selects full path (trust/reputation via DHT + gossip)
 - Last mix knows receiver address but NOT it's the end (via padding strategy)
- ☐ Enhanced Anonymity: Layered encryption+ obfuscation hide endpoints from eavesdroppers

Security & Practical Considerations

- □ Confidentiality/Integrity: End-to-end via Kyber + Dilithium
- □ Anti-Collusion/Traffic Analysis:
 - Low probability of collusion: $f^n << 1$ (f = adversary fraction)
 - Padding: All msgs = MSG_SIZE + padding strategy
 - Dummies: Injected to random nodes
 - Batching/Shuffling: Disrupts timing
 - Timestamps: Prevent replays
- ☐ Scalability: Load balancing; efficient PQ impls needed
 - Withstands global visibility + partial node control

Security Games & Analysis

☐ Games:

- Game 1: Sender Anonymity
- Game 2: Receiver Anonymity
- Game 3: Communication Anonymity (guess S/R)
- Game 4: Confidentiality
- Game 5: Integrity

□ Adversary's Advantages (Negligible):

- Adv(Games 1, 2 and 3) $\leq \frac{1}{2} f^n + \varepsilon_{Kyber} + \varepsilon_{sym}$
- Adv(Game 4) $\leq \varepsilon_{Kyber} + \varepsilon_{sym}$
- Adv(Game 5) $\leq \varepsilon_{Dil}$

- Introduction & Motivation
- Related Work
- Our Contributions
 - > 5-Node Example
 - > Protocol Overview
 - Key Components & Primitives
 - > Workflow
 - > Security
- Conclusion

Conclusion

☐ Key Takeaways:

- QuMixnet:
 - Scalable PQ mixnet with P2P + robust obfuscation
 - Resists quantum adversaries; strong anonymity/confidentiality
 - Advances over classical/partial-PQ systems

References

- [1] David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM, 24(2):84–90, 1981.
- [2] Peter W Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th annual symposium on foundations of computer science, pages 124–134. IEEE, 1994.
- [3] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim 12 Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A lattice based digital signature scheme. IACR TCHES, 2018(1):238–268, 2018.
- [4] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Le point, Vadim Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-kyber: a cca-secure module lattice-based kem. In 2018 IEEE European Sym posium on Security and Privacy (EuroS&P), pages 353–367. IEEE, 2018.

Q&A

Any Questions?

Thank You