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Definition:
Lateral movement is a critical post-breach phase where an adversary pervasively compromises a
network after an initial foothold.

Adversary's Goal:
To access high-value assets, culminating in large-scale data exfiltration or systemic service
disruption.

The Core Challenge:
These attacks are designed to blend in with legitimate network traffic, thereby evading traditional
signature-based security systems.

Limitations of Existing Methods:
Supervised Models: Brittle when facing novel (zero-day) afttack vectors due to their
reliance on pre-labeled training data.
Unsupervised Models: Prone to high false-positive rates and often fail to categorize
specific attack typologies.
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How can we design an efficient and accurate detection system for lateral movement that provides:
High Accuracy: To reliably identify known attack patterns and minimize false alarms.

Computational Efficiency: To be fast enough for real-time monitoring and rapid threat response.
Generalization Potential: To be capable of flagging novel and unseen anomalies.

Our Proposed Solution: A Hybrid Deep Learning Framework based on a Variational Autoencoder
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Key Concepts
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Generative Model:

The VAE is a neural network architecture that learns to model the underlying probability distribution of
input data.

Core Components:
Encoder: Maps high-dimensional input data to a lower-dimensional, probabilistic latent space.
Decoder: Attempts to reconstruct the original input by sampling from this latent distribution.

Anomaly Detection Mechanism:

The VAE is trained exclusively on a robust baseline of normal system and network behavior.

Data points that the model fails to reconstruct accurately (i.e., those with a high reconstruction error)
are identified as anomalies, signaling a deviation from the learned norm.
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Proposed Architecture



Key Concepts: Variational Autoencoder (VAE)

Dual-Purpose Design: A single, end-to-end model featuring a

shared encoder with two distinct output heads.

1. Reconstruction Head (Decoder): For unsupervised, robust feature
representation learning.

2. Classification Head (Classifier): For supervised, fine-grained threat
classification.

Key Advantage: The reconstruction task acts as a powerful
regularizer, compelling the encoder to learn a rich and
generalizable latent representation that significantly benefits
the classification task.

Data Flow:

1. A 44-dimensional feature vector enters the Encoder.

2. A 16-dimensional latent vector (z) is sampled.

3. This vector is simultaneously fed to the Decoder (for reconstruction)
and the Classifier (for prediction).

Shape (batch, 44)
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Dataset:
LMD-2023: The only benchmark corpus comprising Sysmon logs specifically for evaluating lateral
movement detection methods.

1. Contains approximately 1.75 million log samples.

2. Highly imbalanced, with normal traffic constituting about 92% of the samples.

3. Three classes: 'Normal', 'EORS' (Exploitation of Remote Services), and 'EoOHT' (Exploitation of Hashing
Techniques).

Feature Engineering Process:
Initial Extraction: Started with 93 features from raw Sysmon logs.
Feature Selection: Used PCA and model coefficient analysis to select 15 key conceptual features.
Encoding: Converted categorical features (e.g., hosthames) to numerical format using one-hot
encoding.
Normalization: Scaled all numerical features to a standard [0, 1] range using Min-Max  normalization.
Final Result: A 44-dimensional input feature vector for the model.
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Experimental Setup
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Environment: Google Colaboratory (Colab) with an NVIDIA Tesla T4 GPU and 16GB of VRAM.
Frameworks & Libraries: Python 3.10.12, TensorFlow 2.15.0 (with Keras), Scikit-learn 1.2.2.
Model Training Parameters:

Optimizer. Adam with a learning rate of 0.001.
Batch Size: 128.

Loss Function; A composite function combining Reconstruction (MSE), KL Divergence, and
Classification (Categorical Cross-Entropy) losses.

Overfitting Prevention: Employed EarlyStopping and ReducelLROnPlateau callbacks.

Evaluation Metrics: Accuracy, Precision, Recall, F1-Score, and AUC (Area Under the Curve).
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Model Features | Cis | AUC | Prec | Recall | F1 | Acc | Epochs | k-fold | T.E. Time
Lateral movement previous works

MV (RF, LB, LoR) 4 2 - - 0.66 99.62 N/A 4 -
GRU DNN 8 2 93.23 - - 96.68 60 v -
Ensemble ML 8 2 88.70 - - - N/A v -

SS DL 8 2 91.3 - - 99.9 N/A x -

UML with JD 15 2 - 6 - - - N/A x -
K-Means UML 27 2 81 - - - - N/A x -

RF 29 2 83.73 81.23 0.82 - N/A v 00:00:02:06
LaBi 32 2 - 99.87 99.47 0.97 99.9 N/A v 00:00:11:28
RF 35 2 - 80.31 80.29 0.8 - N/A v 00:00:03:11
ET 15 3 99.84 99.05 99.79 99.41 99.89 N/A x 00:07:30:12
LSTM 15 3 95.82 95.11 94.36 95.55 98.93 30 x 00:15:44:18
This work. In each case, the best performers based on F1 score for LMD dataset

VAE 44 | 3 | 99.6983 88.4756 88.5484 88.5029 98.3570 58 v 00:00:02:54
Key Findings:

Our model achieved an excellent AUC of 99.70%, demonstrating outstanding class separation capability.
While the Extra Trees (ET) model shows a slightly higher F1-score, our VAE model is dramatically faster. A total
execution time of 2.54 seconds versus 7.5 minutes for ET validates our model's viability for real-time,
operational deployment.
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Model evaluation
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Confusion Matrix
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Discussion and Analysis
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Key Contributions of This Work:
1. A Novel Hybrid Framework: We proposed and successfully implemented a VAE-centric hybrid framework,
proving the viability of generative models for this complex cybersecurity challenge.

2. A Compelling Balance of Accuracy and Efficiency: Our empirical results demonstrate a strong balance
between high discriminative power (AUC of 99.70%) and operational speed, establishing the VAE as a
powerful and viable tool against Advanced Persistent Threats (APTSs).

Future Work:

1. Enhancing Interpretability: Analyzing the learned latent space to better understand the model's decision-
making process.

2. Exploring Unsupervised Capabilities: Formally leveraging reconstruction error as a standalone mechanism
for zero-day threat detection.

3. Hybridization with Other Methods: Combining VAEs with Graph Neural Networks (GNNs) or Bayesian
approaches to enhance detection capabilities.

4. Evaluating on more diverse and noisy real-world datasets to further test model robustness.



Thank you for
your attention.

Do you have any questions?
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