Detecting Intruders in OT Networks

Mehdi Sayyad

Ali Mirzaee

Aban 1404

Who We Are

Mehdi Sayad

Security Architect/Consultant
Over 15 years working different
cybersecurity projects in IT/OT

Interested fields:

- Penetration testing and risk assessment
- Network security architect
- Attack detection and analyses
- Software security
- ICS OT Network security

Ali Mirzaee

DevSecOps Engineer

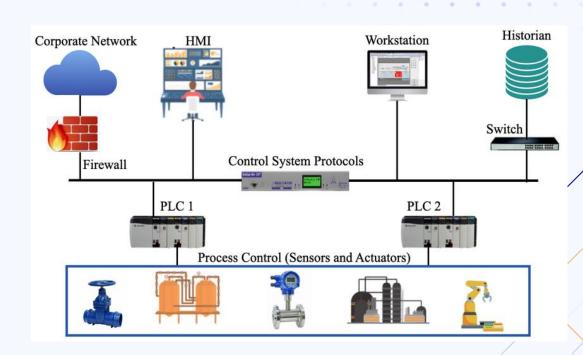
+5 years in IT/infra Automation

Interested fields:

- CI/CD and secure pipelines
- Security automation
- Infrastructure as Code
- las security
- Attack detection and intrusion analyze

Agenda

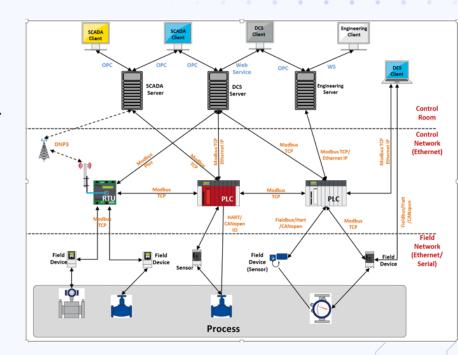
OT elements Fundamentals
IT vs OT security differences
ICS attack case studies (Stuxnet, TRITON, Colonial Pipeline)
Threat actors targeting OT
Common Vulns & Attack Vectors
Kill chain & TTP Analysis in OT
OT/ICS Network Visibility & Intrusion Detection
Hands-on tools and exercise


OT/ICS Environment and Threat Landscape

Understanding OT/ICS Networks and Attack vectors

Intro to OT Environments

- SCADA
- HMI
- EWS
- PLC
- RTU
- IED
- SIS
- Communication devices
-
- ...



Typical OT Network: Protocols

Fieldbus/serial:

Fieldbus: Modbus RTU, Profibus, DeviceNET, CANOpen IndustrialEthernet:

Modbus TCP, Profinet, Ethernet/IP, Ethernet CAT Wireless: 802.15.4, 6LoWPAN, Bluetooth/L, Cellular LORA Wi-Fi WirelessHART, ZigBee

IT vs OT Security

IT Goal: Protect data (Confidentiality, Integrity, Availability).

OT Goal: Protect human safety and physical processes (Availability, Integrity, Confidentiality).

IT vs OT Security

Aspect	IT Security	OT Security
Focus	Data protection and business continuity	Physical safety and process uptime
Environment	Office/digital networks	Industrial/legacy systems
Downtime Tolerance	Can handle updates/restarts	Avoids changes to prevent disruptions
Threats	Phishing, ransomware on data	Malware targeting hardware/control
Update Cycle	Frequent patching	Rare, to maintain stability

Common weakness in OT/ICS

Lack of network segmentation allowing lateral movement from IT to OT.

Weak or default credentials, poor identity and access management.

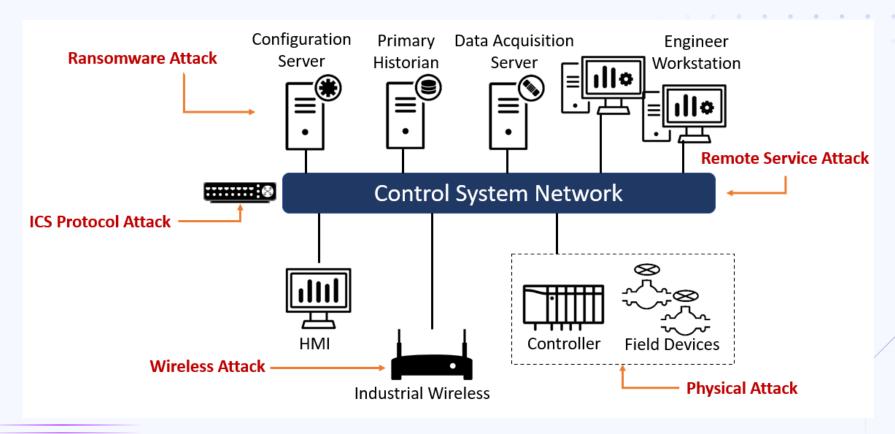
Legacy and unpatched systems with known vulnerabilities.

Unsecured remote access and poor monitoring.

Synchronization of IT and OT identity services leading to wider exposure

Limited logging and anomaly detection preventing early attack detection

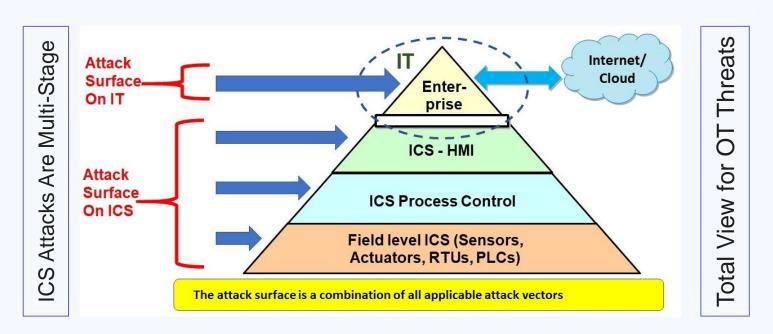
Threat Actors Targeting OT


CYBER THREAT ACTOR MOTIVATION NATION-STATES GEOPOLITICAL CYBERCRIMINALS PROFIT HACKTIVISTS IDEOLOGICAL TERRORIST GROUPS **IDEOLOGICAL VIOLENCE** THRILL-SEEKERS SATISFACTION **INSIDER THREATS** DISCONTENT

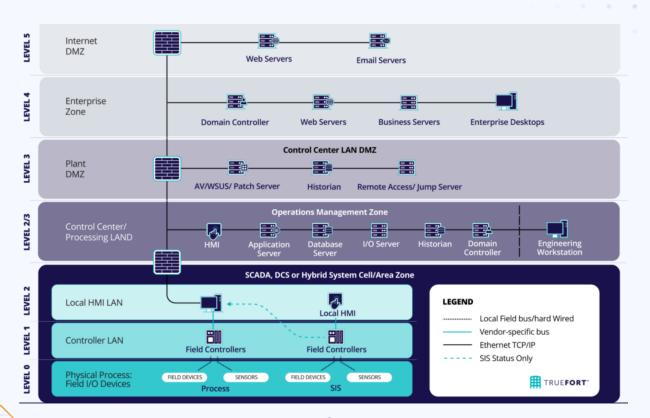
OT Attack Vectors

How attackers infiltrate OT/ICS environments?

- Phishing and Social Engineering: Deceptive emails or communications trick employees into revealing credentials or installing malware, exploiting human vulnerabilities for initial access.
- Compromised Remote Access: Weak controls like default credentials or unsecured VPNs/RDP allow direct entry via vendor or support systems.
- Removable Media (USB Drives): Infected devices introduce malware, bypassing air-gaps through physical access and lax controls.
- Exploitation of OT Protocol Weaknesses: Insecure protocols (e.g., Modbus, DNP3) without encryption enable command spoofing and lateral movement.
- Vulnerabilities in Legacy Systems: Unpatched, outdated OT hardware/software provide exploitable flaws for easy breaches.
- Supply Chain and Software Compromise: Malicious code inserted via updates or hardware from trusted suppliers infiltrates networks.


OT Attack Vectors

Real-world attacks


Date	Attack Name	Target	Description
2010	Stuxnet	Iranian nuclear centrifuges	First known malware targeting OT; disrupted uranium enrichment by manipulating Siemens PLCs via USB infection.
2016	Industroyer	Ukraine power grid	Malware causing blackout by controlling circuit breakers and relays through OT protocols.
2017	Triton	Saudi petrochemical plant SIS	Targeted safety instrumented systems (SIS) to disable safety controls, risking catastrophic failures.
2021	Oldsmar Water Plant	Water treatment facility, USA	Attempted to poison water supply by altering chemical levels through stolen remote credentials.
2021	Colonial Pipeline	US fuel pipeline system	Ransomware attack caused shutdown, disrupting fuel supply nationwide.
2022	Industroyer2	Ukraine power grid (thwarted)	Updated malware variant caught before causing the prior damage level.
2022	Toyota Supplier Attack	Kojima Industries (Toyota supply)	Ransomware disrupted production management systems, halting plants globally.

Why Network Visibility Matters in ICS

Without visibility we cant catch intruders and defense advances threats

Purdue Model for OT

Analysis of attacks

Attacks on OT and ICS systems are modeled by the ICS Cyber Kill Chain and the MITER ATT&CK for ICS Matrix

Research, identification, and selection of targets

DELIVERY

Transmission of weapon to target

INSTALLATION

Weapon installs a backdoor on a target's system allowing persistent access

ACTIONS ON OBJECTIVES

Attacker works to achieve objectives, which can include an exfiltration or destruction of data, or intrusion of another target

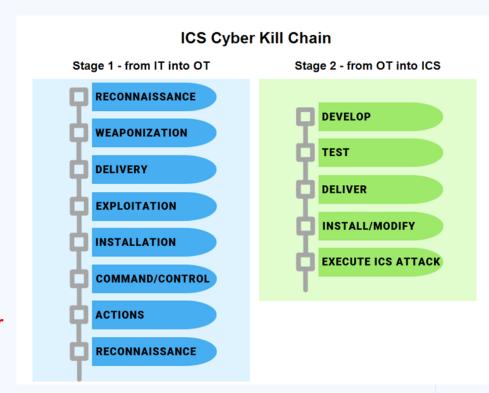
WEAPONIZATION

Pairing remote access malware with exploit into a delivery payload

EXPLOITATION

Weapon's code is triggered, exploiting vulnerable applications or systems

COMMAND & CONTROL


The outside server communicates with weapons to provide "hands-on keyboard access" inside the target's network

ICS kill chain

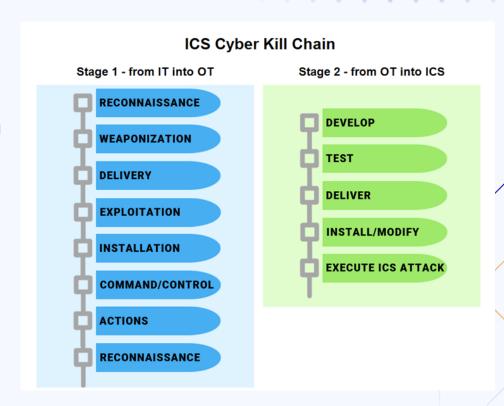
The ICS Cyber Kill Chain is an adaptation of Lockheed Martin's original Cyber Kill Chain framework, extended for OT/ICS environments. It divides attacks into two stages:

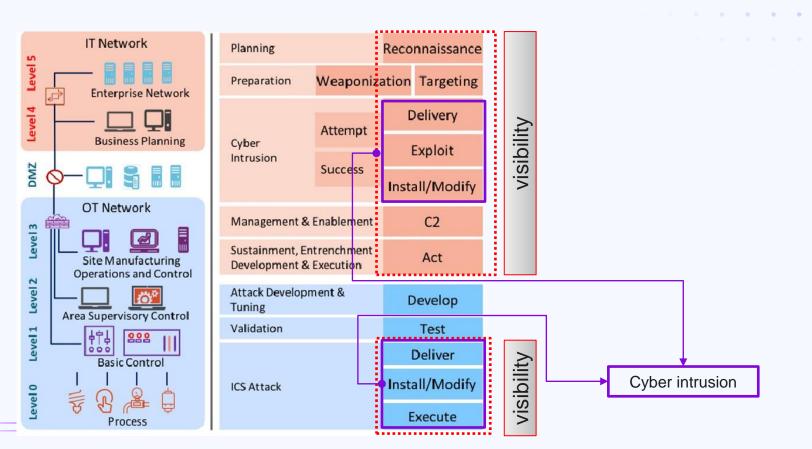
Stage 1 (IT-Focused Intrusion) for gaining initial access and persistence in enterprise networks

Stage 2 (OT-Focused Attack) for targeting ICS-specific components.

ICS kill chain

Stage 1:


- Planning: Reconnaissance using OSINT, vulnerability scanning, and target profiling.
- **Preparation**: Weaponization of tools/malware and selection of delivery methods.
- Cyber Intrusion: Delivery and exploitation for initial access.
- Management and Enablement: Establishing C2 channels and basic persistence.
- Sustainment, Entrenchment, Development, and Execution: Lateral movement, data exfiltration, and preparation for OT pivot.


ICS kill chain

Stage 2:

- Attack Development and Tuning: Creating ICS-tailored payloads using exfiltrated data.
- **Validation**: Testing in simulated ICS environments.
- ICS Attack: Execution of disruptive actions on OT systems (e.g., process manipulation).

ICS kill chain in OT Architecture

ATT&CK for ICS

knowledge base and TTP catalogue of attacks organizing adversary behaviors into:

- •Tactics (TA IDs): 12 high-level "why" objectives, representing stages in the ICS Attack Lifecycle (from initial foothold to disruption).
- •Techniques (T IDs): Specific "what" methods to achieve tactics, with 85 total as of the latest matrix.
 - Sub-Techniques: Granular variations within techniques (e.g., T0859.001 for specific protocol exploits).
- •Procedures: Real-world examples tied to threat groups, campaigns, or software (e.g., Stuxnet's use of T0885 for PLC firmware modification)(how).
- •Mitigations (M IDs): Countermeasures, such as M0951 (Update Software) to patch vulnerabilities in ICS devices, often requiring operational downtime planning.
- •Groups, Campaigns, and Software: Over 20 adversary groups (e.g., Sandworm) and software (e.g., Industroyer) mapped to TTPs.

Why This Matters for ICS Defenses

- Tactics → guide overall strategy (e.g., segment IT/OT to block lateral movement)
- Techniques → inform detection rules (e.g., monitor for anomalous PLC writes via tools like Snort for ICS protocols)
 - Procedures → enable threat hunting (e.g., check for Stuxnet-like USB artifacts in air-gapped environments).

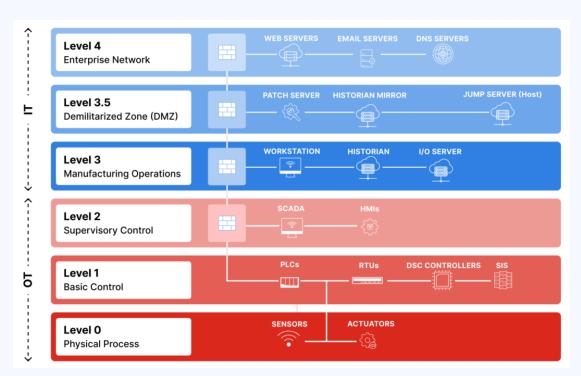
Demo: MITRE ATTCK for Hunters

Exercise: Using Matrix & navigator

 APT33 is a suspected Iranian threat group that has carried out operations since at least 2013. The group has targeted organizations across multiple industries in the United States, Saudi Arabia, and South Korea, with a part

 Sandworm Team: Sandworm Team is a destructive threat group that has been attributed to Russia's General Staff Main Intelligence Directorate (GRU) Main Center for Special Technologies (GTsST) military unit 7445

02


OT/ICS Network Visibility & Intrusion Detection Basics

Enabling OT Networks to detect cyber intrusions

Understanding Purdue Model

- Key Components: Programmable Logic Controllers (PLCs), Human-Machine Interfaces (HMIs), Remote Terminal Units (RTUs), SCADA server, Historian, and Engineering Workstation.
- Network Segmentation: The OT zone is separated from the IT zone by a firewall to restrict and monitor traffic flow.
- Remote Access: Access is via a secure gateway enforcing authentication and encrypted communications to isolate OT from internet threats.

The Purdue Model provides clear boundaries between OT zones, ensuring segmentation and security. logical layers (0-4) separate IT and OT domains, limiting lateral movement and enforcing defense-indepth.

Threat detection can be enabled by IDS/IPS, anomaly detection, and network monitoring at each level.

Level 0-1: Field Devices & Control System

Sensors, actuators, PLCs, and other physical devices.

Vulnerable to attacks, often exposed to direct access.

Threat Detection: Use of Industrial IDS/IPS (Intrusion Detection/Prevention Systems), physical device monitoring.

Level 2: Control Network:

- •SCADA systems and HMIs.
- •Manages critical industrial control functions.
- Threat Detection: Implement network traffic analysis and endpoint monitoring (e.g., SIEM tools).

Level 3: Operations

- •Operations management, MES (Manufacturing Execution Systems).
- •Contains data needed for production planning and execution.
- •Threat Detection: Secure access and monitor device communication with firewalls and data encryption.

Level 4: Business Network

- Corporate IT systems, ERPs, and cloud services.
- •Interfaces with OT to enable analytics and reporting.
- •Threat Detection: Vulnerability scans, antivirus, and file integrity monitoring

Level 4: Business Network

- Corporate IT systems, ERPs, and cloud services.
- •Interfaces with OT to enable analytics and reporting.
- •Threat Detection: Vulnerability scans, antivirus, and file integrity monitoring

Level 5: Enterprise IT Systems

- •Centralized data management and business applications.
- •Interfaces and exchanges data with lower OT levels.
- •Threat Detection: Advanced firewall setups, traffic encryption, data loss prevention systems.

ICS Network Visibility Components

Achieving real-time visibility in OT networks is critical for timely detection and response to threats

- Asset Discovery Catalog all OT devices (PLCs, HMIs, RTUs, servers).
- Use passive monitoring (SPAN/TAP) to avoid disrupting sensitive systems.
- Network Segmentation and Traffic Control industrial firewalls and zone-based architecture
 to limit traffic paths and reduce attack surface.
- **Protocol Awareness** Deploy OT-aware Intrusion Detection Systems (IDS), or sensors that understand OT protocols (Modbus, DNP3, OPC UA) and monitor for anomalous behaviors.
- Centralized Log Collection and Analysis Forward logs from OT devices, firewalls, and IDS
 to a Security Information and Event Management (SIEM) system./Employ correlation rules
 tuned for OT threat indicators.
- Threat Hunting Capability Develop playbooks for manual threat hunting using threat intelligence and behavioral analytics.
- Note: Use active scanning tools cautiously to avoid disrupting OT process controls.

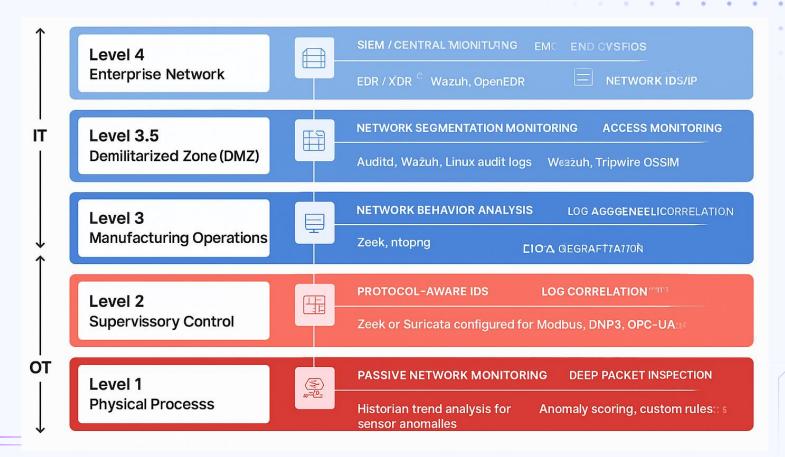
Methods of detection

Attacks in ICS often exploit **trust and predictability**. Detection should cover:

Signature-based Detection (Known Threats): Detects malware (e.g., Stuxnet, Industroyer) and exploits with known patterns. Tools: Snort/Suricata with ICS-specific rules.

Anomaly-based Detection (Unknown Threats): Detect unusual commands, traffic spikes, or new device communications. Example: An unexpected "Write" command sent to a PLC at midnight.

Stateful Protocol Analysis/Behavioral Detection: compares observed behavior to normal protocol states. detects attacks that misuse legitimate protocols (like DNS tunneling). In ICS Environments Behavioral Detection Model normal process values (temperatures, pressures). Alert if commands push process out of safe bounds.


ICS Attack Techniques(ATT&CK View)

Attack	ATT&CK ID	
Command Injection: Malicious writes to PLC memory/registers.	T0855 (Unauthorized Command Message), T0831 (Manipulation of Control)	
Replay Attacks: Sending old valid data to trick operators.	T0831 (Manipulation of Control), T0830 (Adversary-in-the-Middle)	
Man-in-the-Middle: Altering sensor readings or operator commands	T0830 (Adversary-in-the-Middle)	
Rogue Device Insertion: A new laptop or controller connected to the network.	T0848 (Rogue Master), T1200 (Hardware Additions)	
Protocol Misuse: Abusing functions like "Stop PLC" or "Firmware Update".	T0800 (Activate Firmware Update Mode), T0857 (System Firmware), T0855 (Unauthorized Command Message), T0875 (Change Program State)	

Threat Detection Arsenals

Purdue	Zone	Key Tools	Primary Goal
L4	Enterprise IT	ELK, Wazuh, Suricata, MISP	Stop IT-origin threats before OT pivot
L3.5	DMZ	Suricata, Zeek, File Integrity, Jump Host Monitoring	Secure IT–OT boundary
L3	Operations	Zeek, Graylog/ELK, TheHive, OT IDS	Detect internal movement, abnormal data
L2	Supervisory	SCADA logs, Zeek/Suricata (ICS rules)	Detect HMI or SCADA misuse
L1	Control	PLC traffic monitoring, firmware checks(Sysmon + Wazuh, Auditd (Linux))	Stop unauthorized commands
L0	Physical	Sensor anomaly,SIS monitoring, custom rules, pcaps, wireshark	Detect physical process manipulation

Purdue under detection umbrella

03

Detection and hunting Using Open-source-tool

Getting your hand dirty

Tools Detection Approaches

Signature-based → (Snort/Suricata)

Anomaly-based → (Zeek)

Behavior-based → ELK/Graylog/

Baselining & analyzing and Hunt suspicious behavior (ML/EDR/SIEM)

Detection Tools

Suricata/Snort: Signature-based IDS for ICS threats

Zeek: Protocol analysis & anomaly detection

ELK/Graylog: Centralized logging and dashboards

Wazuh Edge/endpoint monitoring

MISP: Threat intelligence integration

Hands-On Exercise 1:

Modbus Traffic Analysis Example

Examining Modbus traffic allows differentiation between normal and anomalous activity critical for ICS security.

- Provide PCAP files with ICS traffic
- Task: Identify abnormal PLC commands and unauthorized HMI login attempts

Hands-On Exercise 2:

Create ics rule in Suricata and sending logs to ELK

Pipeline: Collect \rightarrow Detect \rightarrow Alert \rightarrow Investigate

Configuring Suricata rules for Modbus anomalies create a simple detection rule in Suricata for "STOP PLC command" Validate alerts in ELK dashboard
Sending Zeek logs into ELK and building a detection dashboard

Exercise: Suricata for detection and hunt

Open /etc/suricata/suricata.yaml and check/enable app-layer protocol detection. Key points:Ensure app-layer is enabled (default).Set protocols: or per-proto config to allow Modbus, DNP3, ENIP/CIP, etc., as needed.

```
app-layer:
protocols:
    modbus:
    enabled: yes
    detection-ports:
        dp: [ 502 ]
    dnp3:
    enabled: yes
    detection-ports:
        dp: [ 20000 ]
    enip:
        enabled: yes
    iec104:
    enabled: yes

/etc/suricata/suricata.yaml
```

Exercise: Suricata for detection and hunt

Drop in /etc/suricata/rules/local.rules

alert tcp any any -> any 5020 (msg:"Modbus Write Single Coil"; app-layer-protocol:modbus; modbus.func_code:5; sid:1000002; rev:1;)
alert tcp any any -> any 5020 (msg:"Modbus Read Holding Registers"; app-layer-protocol:modbus; modbus.func_code:3; sid:1000003; rev:1;)

sudo suricata-update sudo systemctl restart suricata

Dataset: CIC Modbus Dataset 2023 Dataset: 4SICS ICS Lab PCAP Files

Exercise: Suricata for detection and hunt

Open /etc/suricata/suricata.yaml

```
app-layer:
  protocols:
  http: yes
  modbus: yes
  dnp3: yes
  enip: yes
  # iec104 may not have full keyword support — enable generic tcp/app detection
```

Zeek as NTA/Behavior-based detection to analysis traffic and ICS-specific attacks. Generate .log files for analyzing in SIEM Install zkg (Zeek Package Manager) and packages

Zeek Script/parsers for ICS:

zkg refresh zkg install icsnpp-modbus

zkg refresh zkg install icsnpp-s7comm

```
/opt/zeek/share/zeek/site/packages/

├── icsnpp-modbus/

├── scripts/

├── README.md

├── icsnpp-dnp3/

├── scripts/

├── icsnpp-enip/
├── icsnpp-s7comm/
└── zeek-plugin-bacnet/
```

.zeek scripts defining events, records, and logging.

customize Zeek scripts

Extend from *local.zeek file*Add your own .zeek script file

```
Example: detect Modbus write function codes
```

```
from /opt/zeek/share/zeek/site/local.zeek create an template
Add your own script file
/opt/zeek/share/zeek/site/custom/detect_modbus.zeek
and in include in local.zeek
@load custom/detect_modbus
```

```
check for loading in zkg
cat /opt/zeek/share/zeek/site/packages/icsnpp-
modbus/__load__.zeek
```

```
@load packages/icsnpp-modbus
event zeek init()
    print "Custom ICS detection loaded!";
event Modbus::request(c: connection, req: Modbus::Request)
    if ( reg$function code == 16 ) {
        NOTICE([$note=Notice::Policy,
                $msg=fmt("Modbus write multiple registers from %s", c$id$orig h),
                $conn=c]);
```

customize Zeek scripts
Extend from *local.zeek file*Add your own .zeek script file
Test it

On pcaps: sudo /opt/zeek/bin/zeek -C -r /path/to/test_modbus.pcap local.zeek Live capture(real-interface):
 sudo /opt/zeek/bin/zeek -i eth0 local.zeek
 # or if using zeekctl:
 sudo /opt/zeek/bin/zeekctl deploy

Zeek as NTA/Behavior-based detection to analysis traffic and ICS-specific attacks. Generate .log files for analyzing in SIEM

Zeek-data sets: test traces

Zeek Parsers: ICSnpp

Zeek Script/parsers for ICS:

zkg refresh zkg install icsnpp-modbus

zkg refresh zkg install icsnpp-s7comm

Logs stored in → /opt/zeek/logs/current/

Wazuh can detect and monitor OT/ICS traffic (like Modbus, DNP3, BACnet, etc.) using:

- Using Wazuh custom decoders and rules (act as EDR/FIM on endpoint)
- Collecting logs from network monitoring tools (e.g. Zeek, Suricata, Snort) & alerts for protocol anomalies or specific events

Main Components

Component	Purpose	Key Path
Decoders	Parse protocol fields from logs	/var/ossec/etc/decoders.d/
Custum Rules	Trigger alerts based on decoded data	/var/ossec/etc/rules.d/
main config	Enable modules, inputs, or log sources	/var/ossec/etc/ossec.conf
Agent config	Define local log collection	/var/ossec/etc/ossec.conf on agent
Logs for testing	Store log samples to simulate events	/var/ossec/logs/ /var/ossec/logs/alerts/alerts.log
Local rules		/var/ossec/etc/rules/local_rules.xml

Example: Modbus Detection Setup

Step 1: Add a decoder File: /var/ossec/etc/decoders.d/mo dbus_decoders.xml

Step 2: Add a rule File: /var/ossec/etc/rules.d/modbus_rules.xml

Example: Modbus Detection Setup

Step 3:Test the Rules

Restart Wazuh manager sudo systemctl restart wazuhmanager

Create a test log entry:

echo 'modbus src_ip=192.168.1.10 dst_ip=192.168.1.20 func_code=5' >> /var/ossec/logs/test_modbus.log

Check alerts

sudo tail -f /var/ossec/logs/alerts/alerts.log

sudo cat /var/ossec/logs/alerts/alerts.json | grep modbus

Example: OT/ICS Detection Workflow

- **1.Deploy a network sensor** (e.g. Suricata or Zeek) to capture ICS protocols.
- 2.Forward logs (e.g. JSON via syslog or filebeat) to Wazuh.
- **3.Create custom decoders** to parse ICS protocol fields.
- **4.Write rules** to detect anomalies or specific commands.
- 5.Reload Wazuh and test alerts.

Exercise: KIBANA Query & dashboard OTCICS

build OT/ICS protocol detection with the Elastic stack (ELK: Elasticsearch + Logstash/Beats + Kibana)

Export logs in structured JSON (Zeek logs, Suricata eve.json)

- Suricata produces eve.json containing alerts
- Zeek generates modbus.log, dnp3.log, iec104.log (depending on plugins)

Ship logs with Filebeat (or Logstash) into Elasticsearch

create Kibana visualizations & detection rules (Elastic Security / SIEM).

Exercise: KIBANA Query & dashboard OTCICS

Ship logs with Filebeat (or Logstash) into Elasticsearch

Enable Filebeat Suricata module (parses eve.json into ECS)

```
# enable suricata module
sudo filebeat modules enable suricata

# configure module (edit /etc/filebeat/modules.d/suricata.yml)
# point to Suricata eve.json path, e.g. /var/log/suricata/eve.json

# setup index templates and dashboards (one-time)
sudo filebeat setup --dashboards

# start filebeat
sudo systemctl enable --now filebeat
```

Exercise: KIBANA Query & dashboard OTCICS

Ship logs with Filebeat (or Logstash) into Elasticsearch

- Ingest Zeek logs with Filebeat or Logstash
 - enable zeek module in Filebeat or
 - use filebeat.inputs for custom path and ingest_pipeline.

Exercise: KIBANA Query & dashboard OT/ICS

- Use Filebeat / Suricata dashboards as baseline (filebeat setup --dashboards).
- Elastic Create visualizations per protocol:
 - connections by suricata.app_proto or Zeek service/protocol fields.
- Use Elastic Security detection rules (KQL or threshold-based) to generate alerts.

Example KQL queries

suricata.eve.alert.signature:

"MODBUS" or

suricata.eve.alert.signature:

"*modbus*"

event.dataset: "zeek.modbus" and modbus.func code: *

Zeek Modbus activity

Suricata Modbus alerts

Exercise: KIBANA Query & dashboard OT/ICS

- Use Filebeat / Suricata dashboards as baseline (filebeat setup --dashboards).
- Elastic Create visualizations per protocol:
 - connections by suricata.app_proto or Zeek service/protocol fields.
- Use Elastic Security detection rules (KQL or threshold-based) to generate alerts.

Example detection rule:

Rule type: Custom

Conditions: trigger when count >= 5 in 5 minutes for a given source.ip (to detect scanning/brute actions).

query rule

Index: suricata-*, zeek-*

KQL:

(event.category: "network" AND (suricata.eve.alert.signature :

"*modbus*" OR event.dataset : "zeek.modbus"))

Exercise: KIBANA Query & dashboard OT/ICS

Useful example detections:

- Unusually large number of Modbus Function 0x05/0x06 (write coil/register) from single source → possible unauthorized writes.
 - Query: count by source.ip where modbus.func_code in [5,6,15,16] over 5m
- DNP3 link-layer resets / forbidden commands → match DNP3 frame types.
- New/unknown devices talking ICS protocols → baseline expected IPs and alert on unknown device_id or unit_id.
- Protocol mismatch on expected ports (e.g., Modbus on non-502 port) → suspicious.

Threat Hunting in OT

The goal is not to *find alerts* but to **uncover evil**.

"We are compromised, we just don't know it yet." use hypotheses to guide their search through data, looking for Tactics, Techniques, and Procedures (TTPs) associated with known threat actors(APTS) targeting industrial systems. Key principles:

- Proactive, Not Reactive: You are seeking out threats, not waiting for an alarm.
- Hypothesis-Driven: Every hunt begins with a testable statement. (e.g., "An adversary is using the engineering workstation as a pivot point to manipulate PLC logic.")
- Human-Centric: It relies on skilled analysts' intuition, knowledge of the environment, and understanding of adversary behavior.
- Data-Centric: It requires deep visibility into network traffic, device logs, and process data

Hunting Loop in OT (1)

- **1.Hypothesis Formation:** This is the starting point. Hypotheses are based on:
 - 1. Threat Intelligence: MITRE ATT&CK for ICS, reports on groups like Xenotime, Chimera, etc.
 - 2. Asset & Network Criticality: "What is the most dangerous thing an attacker could do to our gas compressor / reactor / grid feeder?"
 - 3. Known Vulnerabilities: New CVEs affecting your specific PLC or HMI models.
 - **4. Behavioral Anomalies:** Unexplained process fluctuations or operator complaints.

Hunting Loop in OT (2)

- **2. Data Collection & Investigation**: The hunter gathers and queries data to test the hypothesis. Key OT data sources include:
 - 1. **Network Traffic**: Flow data (NetFlow) and full packet capture (PCAP) from SPAN ports on OT network switches.
 - 2. Host Logs: Windows event logs from HMIs and Engineering Workstations.
 - 3. Process Logs: Historian data (OSIsoft PI, Aveva), alarm logs from the DCS/SCADA.
 - **4. Asset Inventory**: A detailed list of all OT devices with their make, model, firmware, and network address.

Hunting Loop in OT (3)

- **3. Trigger & Triage:** The investigation reveals a "trigger"—a piece of evidence that warrants deeper analysis. This could be:
 - 1. An unknown IP address communicating with a critical PLC.
 - 2. A command sequence sent at an unusual time.
 - 3. A change in a PLC's ladder logic that wasn't part of a sanctioned change control.

Hunting Loop in OT (4)

- **5. Resolution:** The hunter determines if the trigger is a true positive (a real threat) or a false positive (benign activity).
 - True Positive: Initiate the Incident Response (IR) process immediately. Coordination with operations is essential before any containment action.
 - False Positive: Document the finding. This improves future hunts and can be used to tune automated alerts.

Hunting Loop in OT (5)

- **5. Knowledge Enrichment:** Regardless of the outcome, the hunt generates valuable knowledge.
 - 1. New Detection Rules: Create a SIEM or IDS signature for the discovered TTP.
 - **2. Improved Hygiene:** Identify a misconfiguration or weak security practice that needs remediation.
 - 3. Refined Hypotheses: Inform the next round of hunting.

Casestudy: compromised EWS

- Hypothesis: "An adversary has compromised the Engineering Workstation and is periodically, subtly altering the PLC logic
 - Why: The Engineering Workstation is the "keys to the kingdom" it can program all PLCs.
- ☐ This TTP is documented in MITRE ATT&CK for ICS (T0833 Modify Controller Logic).

Exercise: compromised EWS

- What Data We Need?
- ☐ We can't just scan the PLC; we need to correlate data.
- Network Data: Full packet capture on the control network segment.
- Host Data: Windows Event Logs from the Engineering Workstation (especially logons and process execution).
- Process Data: The Process Historian (OSIsoft PI) logging the Mixing Vat's temperature, pressure, and mix-time.

Hunting tools: Zeek logs & ELK queries

Exercise: compromised EWS

- ☐ The Investigation Finding the Trigger
- "We started by looking for the simplest evil: Was the engineering software used at a strange time?"
- Query: Search Windows Event Logs for TIA Portal (Siemens PLC programming software) execution.
- Finding: We found it was launched at 2:17 AM on a Saturday. No maintenance was scheduled. This is our trigger.

Exercise: compromised EWS

- Corroborating the Evidence Network Footprint
- "Next, we went to the network data. Did the workstation talk to the PLC at that time?"
- Query: Filter packet capture for traffic between the Engineering Workstation and the Mixing Vat PLC IP address around 2:17 AM.
- ☐ Finding: A clear, sustained communication session using the S7Comm (Siemens) protocol for over 5 minutes. This is not a simple polling request; it's a download session.

Exercise: The Smoking Gun - Process Impact

"So we know someone changed the logic. But what did they change? We had to look at the physical process."

Query: Extract from the Process Historian the Mix_Time parameter for the vat for the week before and after the incident.

Finding: The Mix_Time setpoint was silently changed from 120.0 seconds to 118.5 seconds during the 2:17 AM session. This 1.5-second reduction was just enough to create a minor imperfection, explaining the quality control failures.

Exercise: Resolution and Impact

- •True Positive Confirmed: Malicious, unauthorized logic modification.
- •Immediate Action:
 - COORDINATED WITH OPERATIONS FIRST! We did not disconnect anything blindly.
 - Operations took the vat offline safely during a pre-planned transition.
 - The PLC logic was restored from a known-good backup.
 - The Engineering Workstation was isolated and forensically imaged.
- •Root Cause: Compromised credentials for a service account used on the Engineering Workstation.

Exercise: Resolution and Impact

- •True Positive Confirmed: Malicious, unauthorized logic modification.
- •Immediate Action:
 - COORDINATED WITH OPERATIONS FIRST! We did not disconnect anything blindly.
 - Operations took the vat offline safely during a pre-planned transition.
 - The PLC logic was restored from a known-good backup.
 - The Engineering Workstation was isolated and forensically imaged.
- •Root Cause: Compromised credentials for a service account used on the Engineering Workstation.

Exercise: Hunting at L1 - control layer

Component	Purpose	
Zeek	Network protocol analysis (Modbus, DNP3)	
Suricata	Intrusion detection (ICS ruleset)	
ELK Stack (Elastic, Logstash, Kibana)	Visualization and correlation	
Wazuh	SIEM agent + FIM alerts	
PCAP Dataset	"ICS_attack_lab1.pcap" (Modbus unauthorized write example)	
Workstation	Analyst VM with Zeek + ELK	
Network Range	10.10.10.0/24 (Simulated Control Network)	

Bonus: Playbooks for OT

Incident response playbooks for OT security incidents are structured guides that provide specific steps for detecting, containing, eradicating, and recovering from cyber incidents in operational technology environments.

OT Incident Response Playbook template

1.Initiating Conditions

Define the specific triggers that start the playbook, such as detection of malware in OT network, anomalous PLC commands, unauthorized remote access, or safety system alerts.

2. Roles and Responsibilities

Assign clear roles, including Incident Manager (overall coordination), Technical Lead (investigation and remediation), Communications Lead (internal/external notifications), and OT Operations Liaison (ensure process safety).

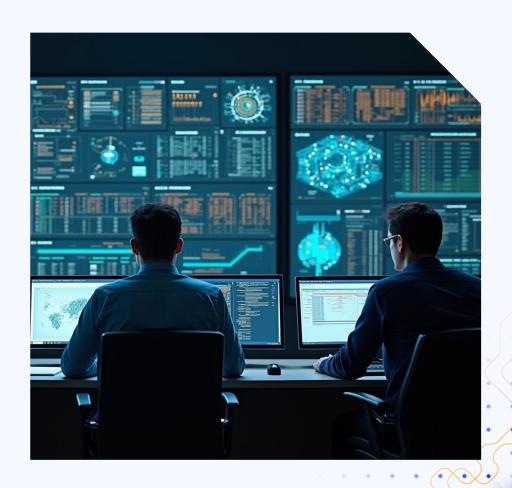
3.Initial Containment

- Isolate affected OT segments to prevent lateral movement.
- Preserve evidence by capturing network logs and device 7.Post-Incident Activities states.
- Restrict remote access and disable suspect accounts or sessions.

4.Investigation and Analysis

- Identify the attack vector and scope through forensic analysis of logs, network traffic, and device behavior.
- Verify integrity and operational status of critical devices such as PLCs. SIS, and HMIs.
- Engage OT process experts to assess impact on safety and production.

5. Eradication and Remediation


- Remove malware, unauthorized access points, and backdoors.
- Apply patches or configuration changes to close exploited vulnerabilities.
- Restore affected devices from secure backups where necessary.

6.Recovery

- Gradually reintroduce isolated systems to the network, closely monitoring for anomalies.
- Validate safe and normal operation of control systems and safety functions.
- Communicate system status and timelines to stakeholders.

- Conduct thorough postmortem to determine root cause.
- Update defenses and detection capabilities based on lessons learned.
- Review and revise the playbook and training as needed to improve future responses.

Conclusions

Thanks!

Do you have any questions?

Email: Mehdi.Sayad@yahoo.com

Whatsup: +98 935 936 9669

Linkein: https://www.linkedin.com/in/msayyad

GitHub: https://github.com/Hex0r1/ISCISC2025-workshop