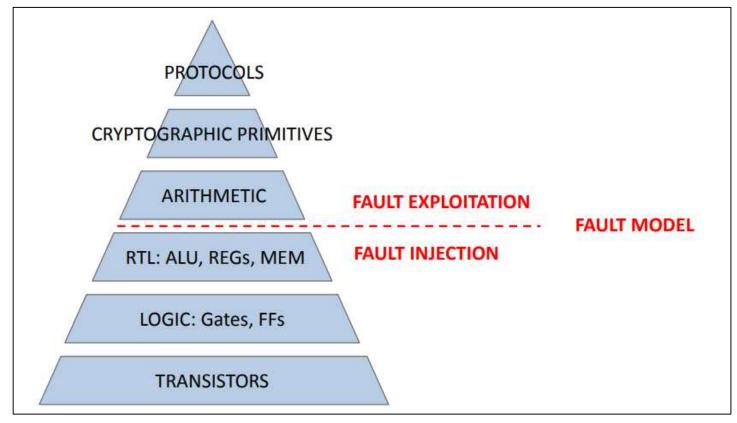
Fault Attacks: How Practical are Fault Injection Attacks, Really?

Hamed Ramezanipour, Ali Nouri

Research Center for Developing Advanced Technologies (RCDAT)


October 2025

Agenda

- ☐ Introduction
- ☐ Fault Attacks
- ☐ Fault Analysis
- ☐ Fault Countermeasures
- ☐ Case studies
- ☐ Further Resources
- □ Conclusions
- ☐ References

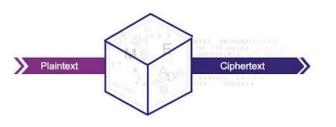
The embedded design space

Introduction

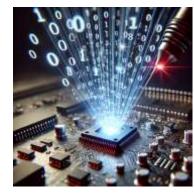
☐ Classification of Attacks

Black-Box Model

The attacker has access to a set of plaintexts and their corresponding ciphertexts.


Gray-Box Model

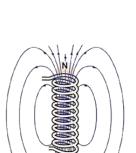
The attacker has access (sometimes physical) to the device.


- A primitive may be secure in black box model but not secure in grey or white box models!
- This talk is about one of the **Grey-box** model.

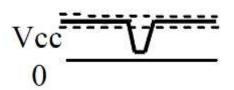
The attacker is inside the system and has access to intermediate values and...!

Fault Attack

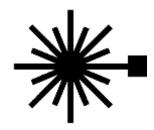
□ Implementation

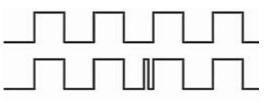

Temperature

Ways to generate a fault [Lomne, 2015]


There are different ways to generate a fault:

- o Electrical glitch on pins (VCC, CLK, I/O,)
- o Electrical glitch on the die (FBBI)
- Light injection
- o ElectroMagnetic (EM) field injection


Voltage Spikes

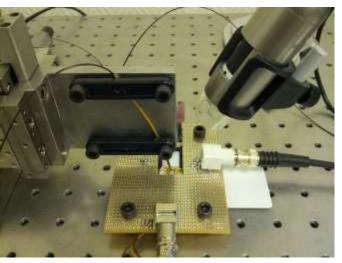


Device Under Attack

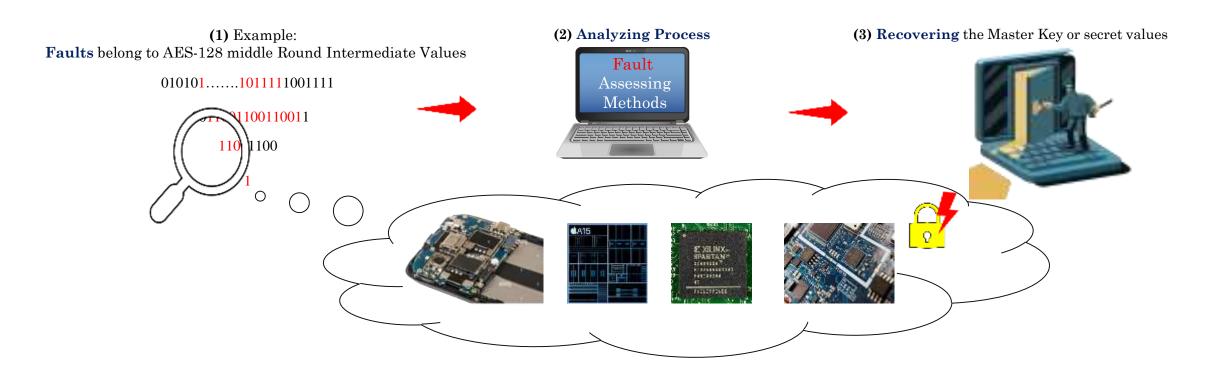
Clock Glitches

Electromagnetic Pulses

Introduction


□ Comparison

Global/Low-Cost/Low-Precision
Clock/Voltage glitch, temperature
Local/High-Cost/High-Precision
Laser, Electromagnetic, Ion Beam



Introduction

☐ Fault Evaluation Route

Introduction

☐ Recent Practical Scenarios in Real World

Voltage Glitch for Recovering Critical Data From Tesla Autopilot [1]

Voltage Glitch on Secure Boot of SpaceX Starlink [2]

EMFI Against Secure Automotive Bootloaders [3]

EMFI Against latticebased signature [4]

Clock Glitch Against Glitch Detector Structure in 12th Generation Intel Core Processor [5]

EMFI on Apple A4 [6]

Glitching the keepkey hardware wallet [7]

Voltage fault injection on PlayStation Vita [8]

[1] Niclas et al, 2023 [2] Lennert, 2022 [3] Enrico et al, 2023 [4] Prasanna et al, 2019 [5] Amund et al, 2024 [6] Carlton Shepherd et al, 2022 [7] Riscure team, 2022 [8] Yifan Lu, 2019.

Introduction

- ☐ Why Fault attacks are important?
- •Reveal vulnerabilities not found in normal testing
- •Real-world consequences: bypass checks, leak secrets, disrupt safety
- •Low-cost for attackers yet effective against complex systems
- •Applicable across domains: smartcards, IoT, automotive, defense

Fault Attacks

- ☐ Fault attacks categories
- Non-Invasive:

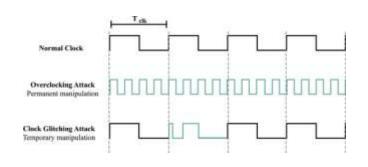
No physical modification; e.g., EMFI.

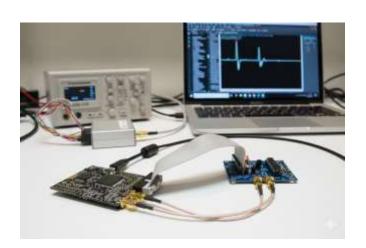
Limited physical access without full chip removal; e.g., clock/voltage glitching.

• Invasive:

Direct modification of the chip with physical access; e.g., laser fault injection after decapsulation.

- ☐ The focus on this presentation:
 - Clock glitching.
 - Voltage glitching.
 - EMFI.

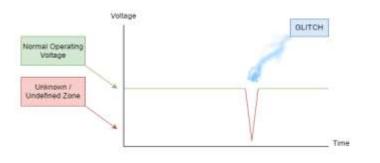


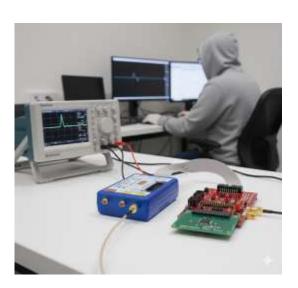

- □ Clock Glitching → manipulate the system clock to skip or corrupt instructions.
- ☐ How to perform clock glitching (tools & approaches)

Devices: ChipWhisperer, clock generator, FPGA, oscilloscope & logic analyzer.

Methods: Inject short pulses or jitter on the clock line, replace crystal with controlled source, gate/skip clock cycles with transistor/FPGA.

Monitor: oscilloscope (clock waveform), logic analyzer (trigger timing), UART/LEDs (DUT behavior).

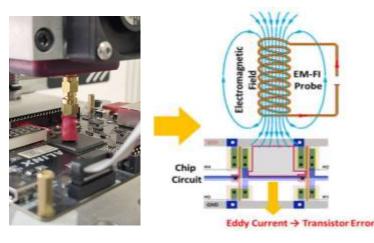



- lue Voltage Glitching \rightarrow inject short voltage drops/spikes to disrupt logic.
- ☐ How to perform voltage glitching (tools & approaches)

Devices: ChipWhisperer, Custom Glitching Hardware, Crowbar circuit.

Methods: Short V_{DD} drop, spikes, capacitor discharge, ground transient injection, crowbar pulses, timed supply gating.

Monitor: High-speed Oscilloscopes.

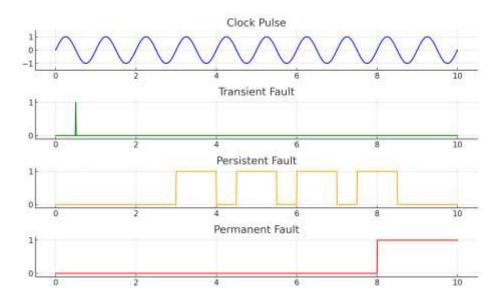

- □ Electromagnetic Fault Injection (EMFI) → use EM pulses to induce transient faults in circuits.
- ☐ How to perform EMFI (tools & approaches)

Devices: ChipShouter, EM pulse guns, custom EM coils, high-voltage pulse generators, Langer near-field probes, Riscure EMFI.

Methods: Near-field EM pulses injected into silicon, spatial scanning for sensitive spots, timed pulses during execution.

Positioning: motorized or manual XYZ stages let you do systematic spatial scans.

Monitor: Python scripts to log, timestamp, and classify outputs.


Key parameters in Fault injection attacks [1]

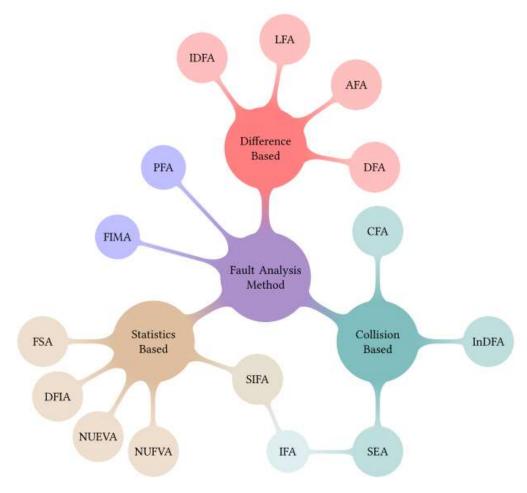
Parameters	Description
Number of Fault Injection Events (n)	The number of physical fault injections performed in a specified time window
Fault Location (l)	Precise: Specific gate(s)
	Loose: Specific cluster of gates, no/partial control on which gates are affected
	No control: Random location
Fault Timing (t)	Precise: Specific clock cycle/operation
	Loose: Set of clock cycles/operations
	No control: Random timing
Number of Affected Bits (b)	The number of affected bits by the fault injection
Duration of the Injected Fault (d)	Transient: Limited, self-recoverable Persistent: Limited, needs to be explicitly overwritten Destructive: Irreversible
Targeted Gate Type (g)	Combinational gates only Memory gates only Both
Fault Type (p)	Set: Faulting to 1 Reset: Faulting to 0 Random: Random outcome Flip: Flipping the value
	Custom: Attacker specified gate modification

Fault Analysis

Fault Analysis Methods

- ☐ Classifications of Fault model: Duration and impact
- ➤ How long it will stay:
 - Transient Fault: Affect one encryption
 - Permanent Fault: Always present
 - Persistent Fault: Hybrid model between transient and permanent. Persist over several encryptions but disappears on reboot. Typically targets stored constants (ex. S-box in memory)
- What it will affect:
 - Modification of operation flow
 - Changing a specific bit/ byte/ word or random
 - Which round, a specific round or random

Fault Analysis Methods


☐ Cryptanalysis approaches

Different models of FA from Cryptanalysis point of view

- Differential fault analysis (DFA)
- Statistical fault analysis (SFA, SIFA, SEFA, ...)
- Persistent fault analysis (PFA, MPFA, SIPFA)
- ...

Fault Analysis Methods

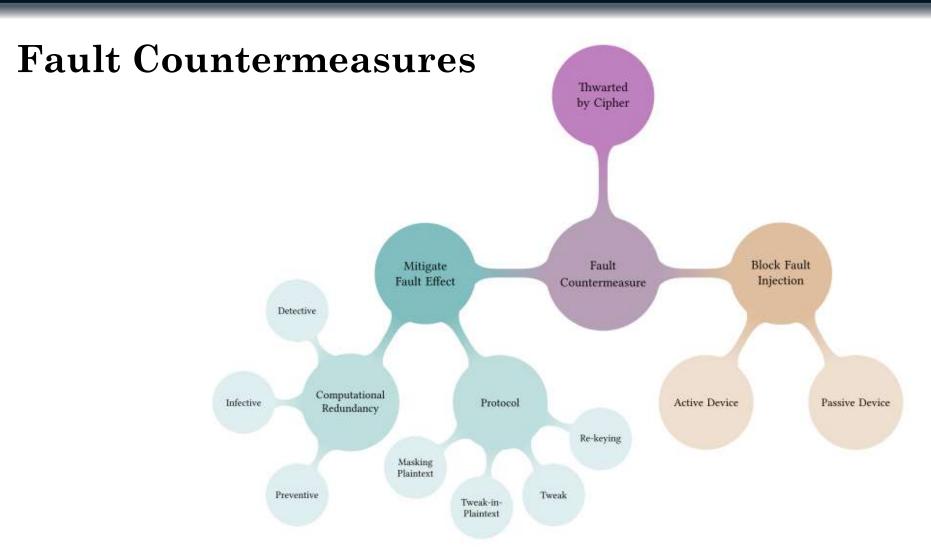
Introduction

Classification of fault analysis methods. [2]

Fault Countermeasures

Fault Countermeasures

Introduction


- > Redundancy based implementation
 - Detection
 - Correction
 - Infection
 - Cipher-based

> Physical Circuit

- Shield
- Physical Detector
- Tamper Detector
- Package

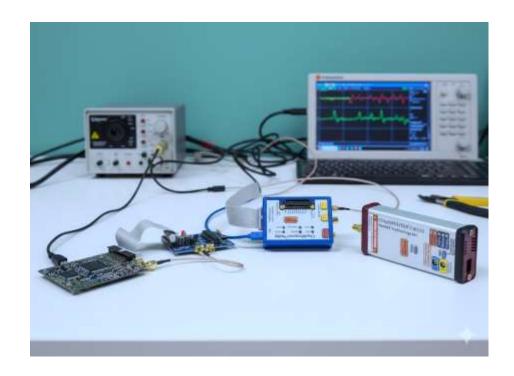
> Protocol

- Re-keying
- Masking plaintext
- Tweak
- Padding

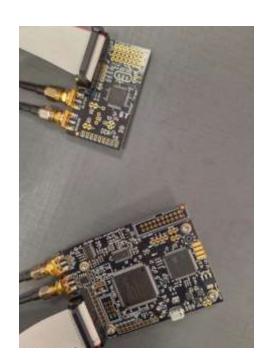
Generic overview of <u>fault attack countermeasures</u>. [2]

Case studies

☐ NewAE experimental setup:


• Chipshouter

Introduction


- Chipwhisperer lite
- Chipwhisperer Husky
- CW305 Target board

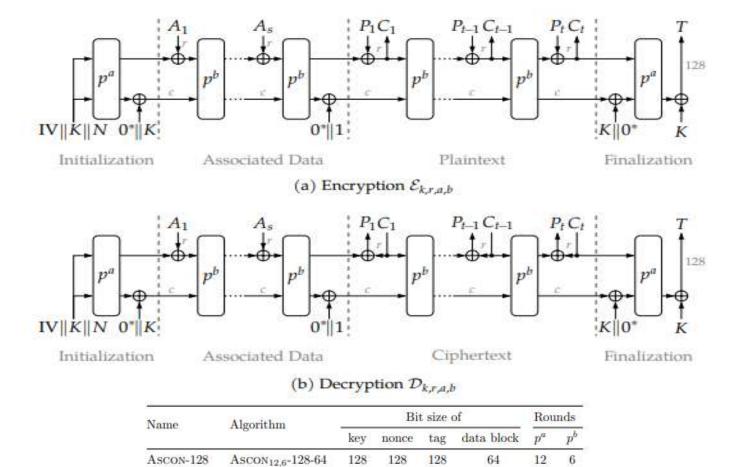
☐ Our attack scenarios:

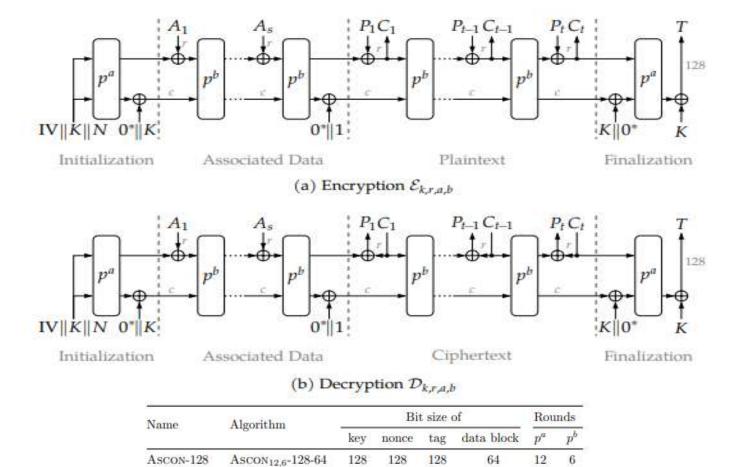
- Using Chipwhisperer lite to make Voltage glitch on STM32 target.
- Using Chipwhisperer Husky to make Clock glitch on cw305 Target board.
- Using Chipshouter with its original Target

☐ Using Chipwhisperer lite to make Voltage glitch on STM32 target.

☐ Using Chipwhisperer Husky to make Clock glitch on cw305 Target board.

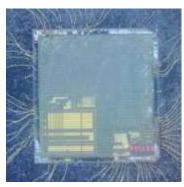
☐ Using Chipshouter with its original Target


- ☐ Our experimental setup:
 - Chipshouter


- Artix7 Xilinx board.
- STM32f405 development board.

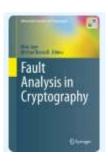
- ☐ Our attack scenarios:
 - Using Chipshouter to make ASCON algorithm output faulty on:
 - 1. Artix7 FPGA
 - 2. STM32f405 ARM

☐ Using Chipshouter to make ASCON algorithm output faulty on ARTIX7.

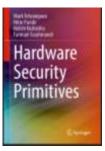


☐ Using Chipshouter to make ASCON algorithm output faulty on ARTIX7.

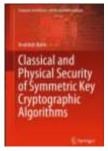
☐ Using Chipshouter to make ASCON algorithm output faulty on STM32F405.

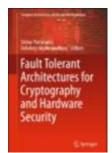


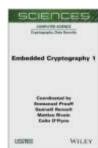
Further Resources


☐ Useful Books:

- The Hardware Hacking Handbook: Breaking Embedded Security with Hardware Attacks, by Colin O'Flynn and Jasper van Woudenberg.
- Fault Analysis in Cryptography, by Michael Tunstall, Marc Joye.
- Hardware Security Training, Hands-on! by Farimah Farahmandi, Mark Tehranipoor, and N. Nalla Anandakumar.
- Hardware Security Primitives, by Mark Tehranipoor, Nitin Pundir, Nidish Vashistha, Farimah Farahmandi.
- Introduction to Hardware Security and Trust, by Mark Tehranipoor
- Classical and Physical Security of Symmetric Key Cryptographic Algorithms, by Anubhab Baksi.
- Fault Tolerant Architectures for Cryptography and Hardware Security, by Sikhar Patranabis, Debdeep Mukhopadhyay
- Embedded Cryptography 1, Emmanuel Prouff, Guénaël Renault, Mattieu Rivain, and Colin O'Flynn.







■ Major Academic Platforms:

➤ Where to Publish: top journals and conferences

- IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES)
- Journal of Cryptographic Engineering (Springer).
- Journal of Hardware and Systems Security (Springer).
- IEEE Transactions on Information Forensics and Security (TIFS).
- IEEE Transactions on Dependable and Secure Computing (TDSC).
- IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD).

- CHES Cryptographic Hardware and Embedded Systems (IACR).
- IEEE HOST Hardware Oriented Security and Trust.
- COSADE Constructive Side-Channel Analysis and Secure Design.
- FDTC Fault Diagnosis and Tolerance in Cryptography.
- CARDIS Smart Card Research & Advanced Applications.
- DATE Design, Automation & Test in Europe.
- DAC Design Automation Conference.

Who's leading the research: Top labs around world

- IAIK, Graz University of Technology, Austria.
- The Labs of "EnICS Labs", Israel.
- Ruhr-Universitat Bochum, Germany.
- Cryptographic Engineering Research Group (CERG), George Mason University, USA.
- Hardware & Embedded Systems Lab (HESL), Nanyang Technological University of Singapore.

- Computer Security and Cryptography Group, ETH Zurich
- Hardware Security and Cryptographic Processor Lab, Tsinghua University, Beijing, China
- Keysight Technologies Netherlands Riscure BV.
- Secure-IC, France.
- Fraunhofer Institute for Applied and Integrated Security.

- Fault injection reveals **hardware vulnerabilities** missed by normal testing.
- Fault analysis methods help make meaningful sense of complex faulty outputs.
- After identifying weaknesses, applying suitable fault countermeasures is the best way to strengthen the system.
- Practical fault injection via Clock glitch, voltage glitch, and EMFI.
- Practical tools like **Chipshouter** and **Chipwhisperer** make these attack accessible for research.

• Key Inspired References

- [1] Dilara Toprakhisar, Svetla Nikova, and Ventzislav Nikov, "SoK: Parameterization of Fault Adversary Models Connecting Theory and Practice", Springer Nature Switzerland AG 2024 E. Oswald (Ed.): CT-RSA 2024, LNCS 14643, pp. 433–459, 2024.
- [2] Anubhab Baksi and Shivam Bhasin, et al., "A Survey on Fault Attacks on Symmetric Key Cryptosystems", *ACM Computing Surveys*, Vol. 55, No. 4, Article 86. Publication date: November 2022.
- [3] Niclas Kuhnapfel, Robert Buhren. et al., "EM-Fault It Yourself: Building a Replicable EMFI Setup for Desktop and Server Hardware", *IEEE Physical Assurance and Inspection of Electronics (PAINE)*. 2022.
- [4] Aghaie, A., Moradi, A., et al., "Impeccable circuits", IEEE Trans. Comput. 69(3), 361–376 (2020).
- [5] Carlton Shepherda, Konstantinos Markantonakisa, et al., "Physical Fault Injection and Side-Channel Attacks on Mobile Devices: A Comprehensive Analysis", arXiv:2105.04454v6 [cs.CR] 22 Mar 2022.
- [6] Jean-Max Dutertrea, Alexandre Menua, et al., "Experimental Analysis of the Electromagnetic Instruction Skip Fault Model and Consequences for Software Countermeasures".
- [7] Colin O'Flynn, "EMFI for Safety-Critical Testing of Automotive Systems".
- [8] Hao Guo, Sayandeep Saha, et al., "Vulnerability Assessment of Ciphers To Fault Attacks Using Reinforcement Learning".

Any questions?

Thank you!

