

Efficient Pairing-free Adaptable k-out-of-N Oblivious Transfer Protocols

K. Khosravani, T. Eghlidos, M.R. Aref Sharif university of Technology Dept. of Electrical Engineering

Oct. 2025

Outline

2

Introduction

K-out-of-N Oblivious Transfer

Conclusion

Definition

$$\sigma_1$$
, σ_2 , ..., σ_k

Receiver

 m_{σ_1} , m_{σ_2} , ..., m_{σ_k}

Sender

$$m_1$$
 , m_2 , ... , m_n

Applications

- Building blocks for SMPC protocols
 - Garbled Circuits
 - Private Set Intersection
 - Private Function Evaluation
- E-Voting
- Private Database Query
- E-commerce Transactions
- Location-based services

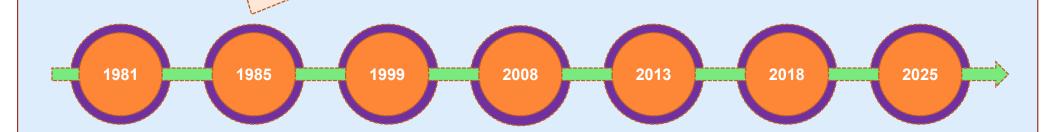
5

- First Idea of Oblivious Transfer [Robin 1981].
- The sender doesn't know if the receiver got the message.



6

- Introduced 1-out-of-2 OT [Goldreich et al. 1985].
- Receiver can obtain one of two messages.

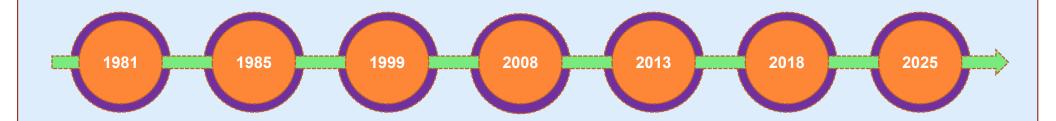


7

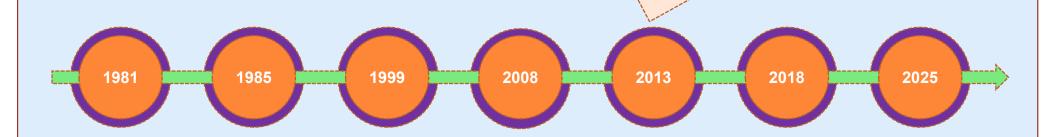
• Introduced efficient K-out-of-N OT protocol [Naor et al. 1999].

8

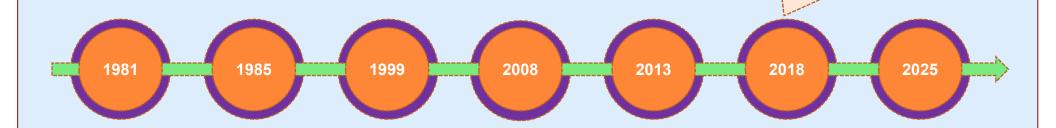
- Efficient K-out-of-N OT [Chu et al. 2008].
- Lowest communication cost in pairing free protocols.
- Based on ROM.



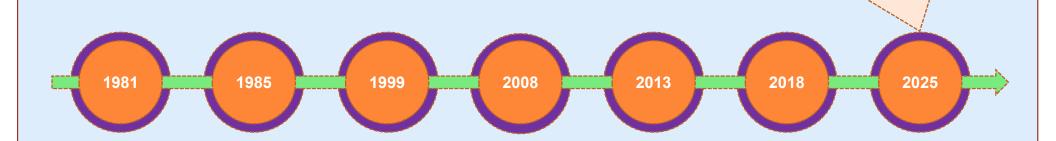
- Introduced first pairing based OT protocol [Guo et al 2013].
- Lower communication cost.
- Higher computation cost.
- Requires TTP.



- Introduced lowest communication cost OT.[Lai et al. 2018]
- Based on pairing.
- High computation cost.
- Requires TTP.



- Research on lower communication and computation cost.
- Extra features like adaptability, UC, multi receiver.



Outline

Introduction

K-out-of-N Oblivious Transfer

Conclusion

Contribution

Theoretical Contribution

- Proposed two problems and proved their hardness via reduction:
 - \times GBRSA \geq RSA
 - \times AGCDH \geq CDH

Practical Contribution

- New Oblivious Transfer Protocols
 - ➤ Designed two new efficient OT schemes based on the hardness of new problems.
- New RSA oblivious key exchange mechanism
 - ➤ Applied this technique to construct Scheme B.

Generalized Blinded RSA (GBRSA)

- Setup:
 - \circ RSA with public key (N, e)
 - o random non-identity elements $x, \beta_1, \beta_2, ..., \beta_{k+1} \in_R Z_N^*$
- Given: $(N, e, x^e, \beta_1, ..., \beta_{k+1}, x\beta_1^d, ..., x\beta_k^d)$
- Goal: compute $x\beta_{k+1}^d$

Oblivious Key Exchange Mechanism

Setup:

- o a, b, p = 2a + 1, q = 2b + 1 are prime
- \circ RSA with public key (N, e)
- $x \in Z_N^*$ such that $x^4 \not\equiv 1 \mod N$
- $\circ \alpha_1, \ldots, \alpha_n \in Z_N^*$
- Public parameters: $(N, e, x^e, \alpha_1, ..., \alpha_n)$
- Goal: $\alpha_i^d x$



Scheme B

Receiver

$$\sigma_1, \sigma_2, \dots, \sigma_k$$

$$s_1, s_2, \dots, s_k \in_R \mathbb{Z}_N^*$$

$$A_i = \alpha_{\sigma_i} x^e s_i^e$$

$$D_i = s_i^{-1} * B_i$$

$$m_{\sigma_i} = C_{\sigma_i} * D_i^{-1}$$

$$A_1, A_2, \ldots, A_k$$

 $B_1, \ldots, B_k, C_1, \ldots, C_n$

Sender

setup $m_1, m_2, ..., m_n$ $C_i = m_i * x \alpha_i^d$

$$B_i = A_i^d$$

Scheme A

Receiver

$$\sigma_1, \sigma_2, \dots, \sigma_k$$

 $s_1, s_2, \dots, s_k \in_R \mathbb{Z}_q^*$
 $A_i = (g^{\alpha_{\sigma_i}})^{s_i}$

$$D_i = B_i^{-s_i^{-1}}$$

$$m_{\sigma_i} = C_{\sigma_i} * D_i$$

$$B_1, \ldots, B_k, C_1, \ldots, C_n$$

 $A_1, A_2, ..., A_k$

Sender

setup $m_1, m_2, ..., m_n$ $r \in_R \mathbb{Z}_q^*$ $C_i = m_i * g^{r\alpha_i}$

$$B_i = A_i^r$$

Features of Proposed Schemes

- No need for a third party.
- The lowest communication and computational cost among existing protocols.
- Only requires modular arithmetic.
- Supports offline precomputation.
- Supports "one-sender, multiple-receivers" model.
- The minimum possible number of rounds.
- Secure in the standard model.
- Adaptable.

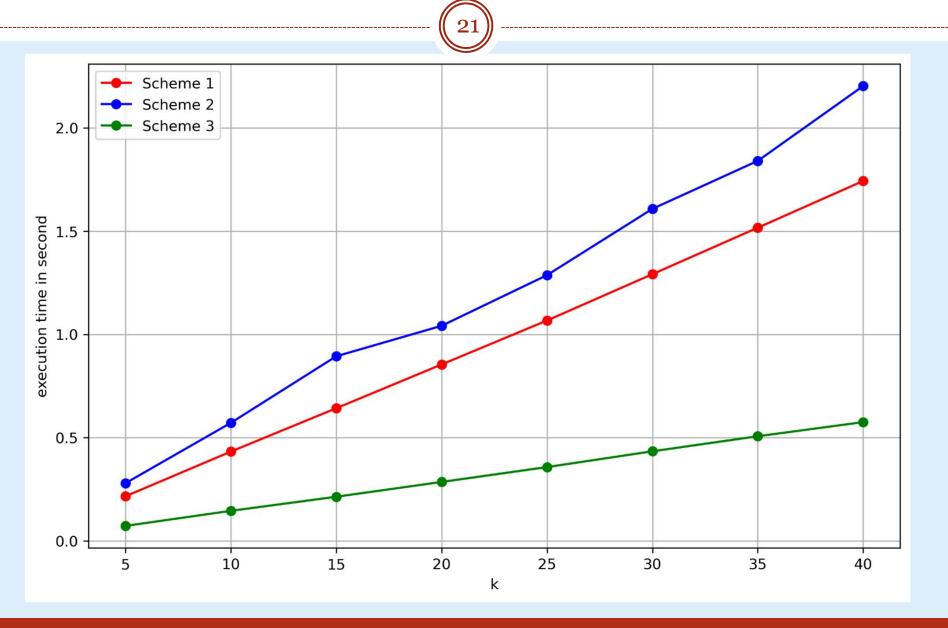
Scheme	Security Model / Assumption	Adv. Model	# rounds	Need TTP	Sender's comp	Receiver's comp.	Comm.
[Chu o8]	CDH-ROM	Malicious	2	X	$(k + n). M_e + 2n. H + n. Enc$	$2k$. $M_e + k$. Inv + k . Dec + $2k$. H	n + 2k
[Hsu 18]	RSA-standard	Semi- honest	3	X	$(n+k)$. M_e	$2k$. M_e	n + 2k
[Wu 03]	DDH-standard	Semi- honest	3	X	$(n+k)$. $M_e + 1$. Inv	$2k. M_e + k. Inv$	n + 2k
[Yang 21]	CDH-ROM	Malicious	3	√	$(2k + 1).M_e$ + $2k.M_m + 2k.H$ + $k.XOR + k.Inv$	$(n + 2)M_e + n.M_m + n.H + n.XOR$	n + 2k + 3
[Wang 20]	GFP-standard	Semi- honest	2	X	nH + nXOR + $(20n + 20k$ + $20\log(s_S))A_A$ + $(40n + 40k$ + $40\log(s_S))A_M$	kH + kXOR + $(36 + 40k$ + $20k$ + $20\log(s_R)A_A$ + $(70 + 80k$ + $40k$ + $40\log(s_R)A_M$	n + 20k
Scheme A	CDH-standard	Semi- honest	2	X	$(k+n)$. M_e + n . M_m	$2k. M_e + k. Inv + k. M_m$	n+2k
Scheme B	RSA-standard	Semi- honest	2	X	$(k+n)$. M_e + n . M_m	$k. M_e + k. Inv + 2k. M_m$	n+2k

Implementation

- Implementation of the proposed protocols using Python, leveraging the gmpy2 and SageMath libraries.
- Codes are available on GitHub.

Scheme	Basis	Modulus Size	
Scheme A.1	Based on a multiplicative group	2048-bit modulus	
Scheme A.2	Based on elliptic curve cryptography	224-bit modulus	
Scheme B	Based on RSA	2048-bit modulus	

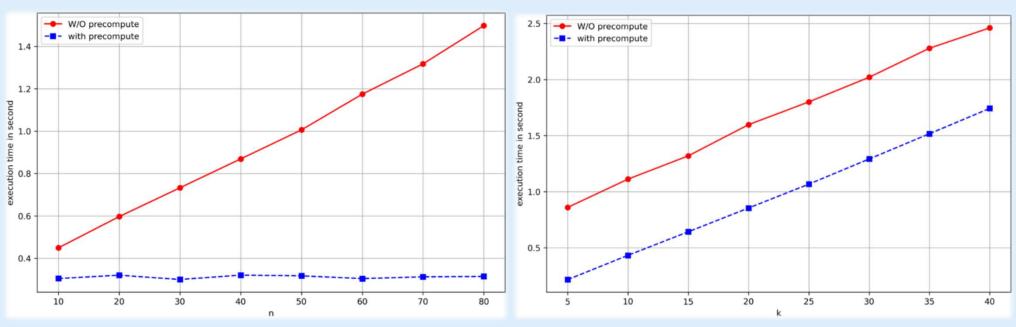
Effect of k on the Execution Time of (k, 45)-OT



Online vs. Offline Computation

Scheme A.1

Effect of k in (k, 45)-OT



Outline

Introduction

• K-out-of-N Oblivious Transfer

Conclusion

Conclusion

- Analysis of Prior Work & Limitations
 - Third-Party Requirement.
 - Performance Issues.
 - Security in the ROM.
 - Not suitable for resource constrained devices.
- Our Contribution
 - Proposed GBRSA & AGCDH, with hardness proofs.
 - New RSA-based oblivious key exchange mechanism used in Scheme B.
 - Two efficient k-out-of-N OT schemes.

References

[Chu 08] Cheng-Kang Chu, Wen-Guey Tzeng, et al. Ef ficient k-out-of-n oblivious transfer schemes. J. Univers. Comput. Sci., 14(3):397–415, 2008.

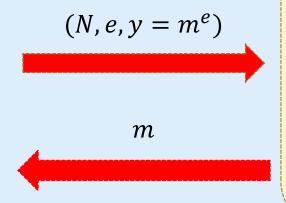
[Hsu 18] Jen-Chieh Hsu, Raylin Tso, Yu-Chi Chen, and Mu-En Wu. Oblivious transfer protocols based on commutative encryption. In 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), pages 1–5. IEEE, 2018.

[Wang 20] Xianmin Wang, Xiaohui Kuang, Jin Li, Jing Li, Xiaofeng Chen, and Zheli Liu. Oblivious transfer for privacy-preserving in vanet's feature matching. IEEE transactions on intelligent transportation systems, 22(7):4359–4366, 2020.

[Yang 21] Huijie Yang, Jian Shen, Junqing Lu, Tianqi Zhou, Xueya Xia, and Sai Ji. A privacy-preserving data transmission scheme based on oblivious transfer and blockchain technology in the smart health care. Security and Communication Networks, 2021(1):5781354, 2021.

Generalized Blinded RSA (GBRSA)

- Setup:
 - RSA with public key (*N*, *e*)
 - \circ random non-identity elements $x, \beta_1, \beta_2, \dots, \beta_{k+1} \in_R Z_N^*$
- Given: $(N, e, x^e, \beta_1, ..., \beta_{k+1}, x\beta_1^d, ..., x\beta_k^d)$
- Goal: compute $x\beta_{k+1}^d$



RSA solver

$$x, A_1, ..., A_k \in_R Z_N^*$$

 $(N, e, x^e, A_1^e, ..., A_k^e, y, xA_1, ..., xA_k)$

$$xy^d \equiv xm$$

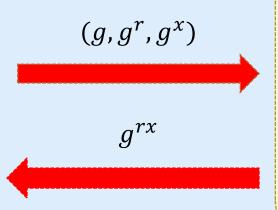
GBRSA

solver

$$xy^u \equiv xr$$
$$x^{-1}xm \equiv m$$

Alternative Generalized Computational Diffie-Hellman (AGCDH)

- Setup:
 - Cyclic group G of prime order p with random generator g
 - \circ $r, \alpha_1, \alpha_2, ..., \alpha_{k+1} \in_R \{0, 1, ..., p-1\}$
- Given: $(g, g^{\alpha_1}, ..., g^{\alpha_{k+1}}, g^{r\alpha_1}, ..., g^{r\alpha_k})$
- Goal: Compute $g^{r\alpha_{k+1}}$



CDH solver

$$\beta_{1}, ..., \beta_{k} \in_{R} Z_{p}^{*}$$

$$(g, g^{\beta_{1}}, ..., g^{\beta_{k}}, g^{x}, (g^{r})^{\beta_{1}}, ..., (g^{r})^{\beta_{k}})$$

$$g^{rx}$$

AGCDH solver

Oblivious Key Exchange Mechanism

- Setup:
 - o a, b, p = 2a + 1, q = 2b + 1 are prime
 - \circ RSA with public key (N, e)
 - $x \in Z_N^*$ such that $x^4 \not\equiv 1 \mod N$
 - $\circ \alpha_1, \ldots, \alpha_n \in Z_N^*$
- Public parameters: $(N, e, x^e, \alpha_1, ..., \alpha_n)$
- Goal: $\alpha_i^d x$

