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Who am I?

® (not) paid to watch programs and not find bugs!
® Seasoned CTF player with lots of stories!

e Directly listen to my brain noises CQ CQ CQ EP2SOL!
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Start working on security for my bachelor’s degree final project
Got familiar with CTFs, co-founded &_{‘2; CTF, the first Iran International CTF

Start my Master at IUST, working on the Network Security and Botnet Detection

Start my Ph.D. at Sharif University, working on Software Security and Vulnerability
Detection

Invited to work as a researcher at HexHive group, EPFL. Working on Kernel fuzzing

Start my Postdoc with S3 group at Eurecom, working on System Security
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A Look Back: The First Inflection Point

® Remember the mid-2010s? In 2016, DARPA
hosted the Cyber Grand Challenge.

® The big question: Could a machine
autonomously find, prove, and fix software
vulnerabilities in real-time?

e Many were skeptical about the power of
automated program analysis, symbolic
execution, and fuzzing.
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A Look Back: The First Inflection Point

® A massive acceleration in automated vulnerability research and the
commercialization of fuzzing.

e It proved that automated systems could reason about security at machine speed.
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Today: The AI Inflection Point

e Fast forward to 2022. DARPA announced the Al
Cyber Challenge (AIxCC).

® The new question: Can we leverage the incredible

power of modern Al to secure the nation's most A I ::

CriticaISOftwarE? AT CYBER|||CHALLENGE

® The goal is to build a new generation of Al-powered
systems that can secure codebases far beyond
human scale.

® Just like the CGC sparked a revolution in automated
bug-finding, the AIXCC signals that we are at another
pivotal moment.




Al is no longer just a research idea;
it's the next frontier for practical
cybersecurity.




Why Now? The Problem of Scale & Complexity &

Traditional, manual security methods are breaking. Signature-based and curated rules
simply can't keep up with the data deluge.

Code: Millions of binary functions across dozens of architectures.

Logs: Petabytes of system, cloud, and network logs generated daily.
Malware: Large, polymorphic families that constantly evolve.

Traffic: Pervasive encryption that limits visibility.

Hardware: Massive volumes of side-channel traces from embedded devices.




We need a new paradigm!




What Does AI Bring to the Table? ﬁ

Al helps us move from matching simple patterns to understanding complex
behavior. It introduces three key capabilities:

® Semantic Learning: Al models can learn the intent and behavior of programs,
network traffic, and user actions, not just their syntax.

e Adaptivity: Al-driven systems can adapt to evolving malware, new attack
surfaces, and changing system behavior without needing constant manual
rule updates.

® Generation: Modern Al can automatically generate security content, from
detection rules and pseudo-code to complex fuzzing inputs.




Early Wins: From Research to Reality %

This isn't just theory. Al is already delivering concrete results across the security
landscape:

® Binary Similarity: Using Al to find similar functions across different CPU
architectures for vulnerability hunting.

® Log Analysis: Treating logs as a language, allowing Transformers and LLMs to
detect subtle anomalies that rules would miss.

® Protocol Fuzzing: Guiding fuzzers with LLMs to automatically infer grammars
and state machines, finding deeper bugs.

e Malware Analysis: Assisting reverse engineers with Transformer models that
provide context and summaries of malicious behavior.

e Side-Channel Analysis: Applying deep learning to analyze power traces, making
hardware attacks more practical and accessible.




Workshop Agenda

Motivation and Landscape P
_ We are here! »
Deep-Dive Modules

Hands-on Experience &
Wrap-up




Deep-Dive Modules

Module 1: Software Module 2: Runtime Module 3: Malware
Security Monitoring Analysis
Module 4: Side-Channel & Module 5: Agentic SecOps Module 6: Guardrails &
ICS/loT & Automation Security of Agentic Al




Software Security
Program Understanding, Vulnerability Discovery and LLM-Guided Fuzzing

Module 1: Software Security




The core problem

-~

Syntactic analysis is hard

- The same logic looks completely different

across compilers and

making scaled analysis nearly impossible.
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Module 1: Software Security
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Decompilation in-the-loop

- IDA pro
- Ghidra
- LLM4Decompile

We can understand binaries, so every program is understable, we can even
generate the original source code ...

Module 1: Software Security



Decompilation in-the-loop

Module 1: Software Security




The Foundational Challenge: Program Understanding

Why Syntactic Analysis is Hard?

Program Understanding in security requires a deep comprehension of a program's logic, data flow, and control flow to
identify potential weaknesses.

Traditional static analysis (SAST) struggles because pure syntactic analysis is difficult and often insufficient:

e Language Complexity: Modern languages like C++ involve complex features (templates, pointers, operator
overloading) that are hard for automated tools to parse perfecily.
° Scale and Volume: Enterprise codebases contain millions of lines of code, making deep, exhaustive analysis
computationally expensive.
e Ambiguity: Code can be ambiguous without the developer's original context or intent. A function might be insecure in
one context but safe in another.
e Limitations of Traditional Tools:
o  High False Positives: SAST tools often flag safe code as vulnerable.
o High False Negatives: They miss complex, logic-based vulnerabilities.

Module 1: Software Security
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Traditional Vulnerability Discovery - Fuzzing

Fuzzing is an automated testing technique that provides invalid, unexpected, or
random data as input to a program to find crashes and vulnerabilities.

Module 1: Software Security



Traditional Vulnerability Discovery - Fuzzing

S ./testme --help
Usage: testme <int32 arg>

S ./testme AAAA
Please enter an integer!

$ cat fuzzer.sh

while
do
input="S (dd if=/dev/urandom bs=4 count=1)"
./testme Sinput || echo S$input >> crash seeds
done

Module 1: Software Security



Traditional Vulnerability Discovery - Fuzzing

Common Fuzzing Techniques:

e Black-box (Dumb) Fuzzing: Generates random inputs with no knowledge of the program's internal structure. It's fast
but inefficient.

e Grey-box (Coverage-Guided) Fuzzing: A major improvement (e.g., AFL, libFuzzer). It uses lightweight
instrumentation to track which inputs exercise new code paths and prioritizes mutating them.

Limitations of Traditional Fuzzing:

e  Getting Stuck: Fuzzers struggle to get past "magic number" checks, checksums, or complex parsing logic (e.g., if
(input_header.checksum == OxDEADBEEF)).

e Shallow Code Coverage: They often repeatedly test simple, easy-to-reach code paths and fail to explore deeper,
more complex program states.

e Lack of Structure Awareness: They are inefficient at generating highly structured inputs (e.g., valid PNG files,
complex network protocols).

Module 1: Software Security



The Al Revolution - Enter Large Language Models (LLMs)

A Paradigm Shift in Program Understanding

Large Language Models (LLMs) like GPT, Gemini, and Codex are trained on massive datasets of source code,
documentation, and natural language. This gives them an unprecedented ability to understand software.

How LLMs Surpass Syntactic Analysis:

e Semantic Understanding: LLMs move beyond syntax to grasp the meaning and purpose of code. They can infer
developer intent from function names, comments, and code structure.

e Context Awareness: They can analyze code in the context of the entire project, including its documentation and
related modules.

e Pattern Recognition: They excel at recognizing common coding patterns, both good (design patterns) and bad
(vulnerability patterns).

LLMs provide a powerful new lens to overcome the limitations of traditional analysis, enabling a deeper and more intuitive
understanding of complex codebases.

Module 1: Software Security



LLM-Guided Fuzzing - The Next Generation

Smarter Inputs, Deeper Bugs

LLM-Guided Fuzzing uses a Large Language Model to generate intelligent inputs that guide a fuzzer toward interesting and
hard-to-reach parts of a program.

How It Works:

1. Code Analysis: The LLM reads the target program's source code.

2. Input Generation: It identifies complex data structures, protocols, and conditional checks. Based on this
understanding, it generates high-quality, valid inputs (seeds) that are likely to satisfy these conditions.

3. Intelligent Mutation: Instead of just flipping random bits, the LLM can mutate these seeds in a semantically
meaningful way (e.g., changing a specific field in a network packet header).

4.  Fuzzing Execution: These intelligent inputs are fed to a traditional fuzzer (like AFL++), which can now explore deep
code paths that were previously unreachable.

This approach combines the semantic understanding of LLMs with the raw speed and power of coverage-guided fuzzers.

Module 1: Software Security



Evidence of Progress and Key Publications

e Key Improvements:
o Increased Code Coverage: LLM-guided fuzzers consistently achieve higher code coverage faster than their
traditional counterparts.
o  Novel Vulnerability Discovery: They have successfully found new, real-world vulnerabilities (CVEs) in well-tested
software that were missed by standard fuzzing campaigns.

e Important Research and Publications:
o Large Language Model guided Protocol Fuzzing — NDSS 2024
o  Fuzz4All: Universal Fuzzing with Large Language Models —ICSE 2024
o Large Language Models for Fuzzing Parsers (Google, 2024): Showcased the ability of LLMs to generate
grammatically valid inputs for parsers, a classic challenge for fuzzers.

Module 1: Software Security



The Future of Al in Software Security

Towards Autonomous Vulnerability Discovery and Repair

LLM-guided fuzzing is just the beginning. The future of Al in software security is moving towards a more autonomous and
proactive ecosystem.

e Automated Program Repair: The next frontier is not just finding bugs, but automatically fixing them. LLMs are
already capable of suggesting or even generating code patches for vulnerabilities they discover.

e Al-Powered Secure Development: Imagine an Al assistant that acts as an expert security code reviewer in
real-time within the IDE, flagging potential vulnerabilities and suggesting secure alternatives as a developer types.

e Autonomous Security Agents: Future systems may autonomously scan code, discover vulnerabilities, generate
exploits to verify them, and deploy patches, all with minimal human intervention.

Module 1: Software Security



What's Still Hard A\

- LLM oracle reliability & hallucinations require human verification.

- Code obfuscation and complex environments (concurrency, JIT) are still major hurdles.
- Ensuring the correctness and safety of Al-generated patches.

- Managing the computational cost of large-scale analysis.

Module 1: Software Security



Runtime Monitoring
Logs/telemetry and network visibility under TLS/QUIC

Module 2: Runtime Monitoring




Lots of Logs, Lots of encrypted traffic!

e Runtime Monitoring: The continuous process of collecting, analyzing, and responding to
network and system events in real-time to identify malicious activities and performance issues.
e The Main Challenge: Today, over 90% of web traffic is encrypted with TLS/QUIC protocols.
While essential for privacy, this encryption blinds traditional security tools like firewalls and
Intrusion Detection Systems (IDS).
e The Problem: Attackers use these same encrypted channels to hide their activities:
o Command and Control (C2) communication
o Data Exfiltration
o Downloading new malware

Modern Solution: Instead of inspecting packet content (Deep Packet Inspection), we must analyze traffic
Metadata and Behavior.

Module 2: Runtime Monitoring



Analyzing Encrypted Traffic Without Decryption

e How Do We See Invisible Traffic? With the rise of TLS 1.3 and QUIC, a large part of the handshake
process is also encrypted. This makes certificate-based identification more difficult.

Solution: Focus on Metadata

e Even without breaking the encryption, every network connection provides valuable information that
can be analyzed.

Module 2: Runtime Monitoring



Fingerprinting - The Digital Fingerprint of Clients and Servers

e Every Application Has a Unique Fingerprint

e When initiating a TLS connection, every application (browser, malware, Python script) presents
specific parameters to the server. The combination of these parameters creates a detectable digital
Fingerprint.

e Introducing JA3 and JA3S

Module 2: Runtime Monitoring



The Role of NDR Systems in Threat Detection

4 I

NDR: Hunting Threats in Network Traffic 1 Data Collection

2. Comparison with Known
Threats

3. Anomaly Detection

How Does NDR Use Fingerprints?

Network Detection and Response (NDR) systems are
specifically designed to monitor and analyze network traffic (both
north-south traffic at the perimeter and east-west traffic between

servers).
- /

Module 2: Runtime Monitoring



Artificial Intelligence (Al) - The Mastermind in NDR

4 I

The Role of Al in Fingerprint Analysis and Advanced

Threat Detection Al Applications in NDR:

Beyond Simple Matching: The Power of Machine Learning 1. Baseline Establishment
2. Intelligent Anomaly

Comparing fingerprints against known lists is not enough to combat Detection

new threats and zero-day attacks. This is where Artificial Intelligence 3 False Positive

(Al) and Machine Learning (ML) play a crucial role.

o /

Reduction
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Log Analysis as Language (Transformers/LLMs for anomalies)

® Deeplog: Anomaly Detection and Diagnosis from System Logs through Deep Learning (CCS 2017)
e Interpretable Federated Transformer Log Learning for Cloud Threat Forensics (NDSS 2022)
e PROGRAPHER: An Anomaly Detection System based on Provenance Graph Embedding (Usenix 2023)

Module 2: Runtime Monitoring



What's Still Hard A\

- Concept drift and seasonality across tenants
- Label scarcity & noisy ground truth
- QUIC/ECH evolution breaking fragile fingerprints

Module 2: Runtime Monitoring



Malware Analysis

Deep learning & Transformers for static/dynamic signals

Module 3: Malware Analysis




The Evolving Threat Landscape

Traditional malware analysis methods are struggling to keep up with the sophistication and volume of modern
threats.

Key Challenges:

e Polymorphism & Metamorphism: Malware constantly changes its code (syntax) to evade
signature-based detection, while keeping its malicious behavior (semantics) intact.

e Obfuscation & Packing: Attackers use advanced packing and encryption techniques to hide the
malicious payload, making static analysis ineffective.

e Massive Volume: Millions of new malware samples are created daily, making manual analysis and
signature generation impossible to scale.

e Fileless Malware: Threats that exist only in memory are invisible to traditional file-scanning antivirus

engines.

We need automated, intelligent systems that can understand a program's behavior and intent, not just its
static signature.

Module 3: Malware Analysis



The Al Revolution in Malware Detection

From Reactive Signatures to Proactive Detection

The rise of Artificial Intelligence (Al) and Machine Learning (ML) marked a fundamental shift from a reactive to a proactive
security posture.

Early AI/ML Approaches (e.g., SVM, Random Forests):

e Analyzed curated features extracted from files (e.g., APl imports, strings, file header info).
e Limitation: Required extensive and brittle manual feature engineering. An expert had to decide what features were
important, and attackers could easily learn to evade them.

The Deep Learning Breakthrough:

e Deep learning models can learn relevant features automatically directly from raw data.
e This eliminates the need for manual feature engineering and allows the model to discover complex, non-obvious
patterns of maliciousness.

Module 3: Malware Analysis



Deep Learning for Static Analysis (Code at Rest)

Deep learning models can analyze malicious code without ever running it.
Common Techniques:

1. Visualizing Binaries as Images (CNNs):
o Abinary file byte sequence is converted into a 2D grayscale image.
o  Convolutional Neural Networks (CNNs), the same models used for image recognition, are trained to
"see" the textural and structural patterns of malware.
o Advantage: This method is highly resilient to simple code obfuscation, as the overall "texture" of the
malware often remains similar.
2. Analyzing Byte Sequences (RNNs/1D CNNs):
o The binary is treated as a one-dimensional sequence of bytes.
o Recurrent Neural Networks (RNNs) or 1D CNNs can analyze this sequence to find malicious patterns.

Key Research:

e "Malware Images: Visualization and Automatic Classification" (Nataraj et al., 2011): A pioneering paper that
introduced the concept of malware classification using image processing techniques.

Module 3: Malware Analysis



Deep Learning for Dynamic Analysis (Code in Motion)

Dynamic analysis involves running the malware in a safe, isolated environment (sandbox) and observing its behavior.

How Deep Learning Helps:

e The behavior is recorded as a sequence of events: API calls, file system changes, registry modifications, and network
requests.

e Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks are ideal for analyzing this
sequential data.

e  The model learns the "grammar" of malicious behavior, such as:

o CreateProcess ->VirtualAllocEx -> WriteProcessMemory -> CreateRemoteThread (a common
process injection pattern).

Advantage: This approach focuses on the malware's ultimate actions, making it effective against even the most heavily
obfuscated or packed samples.

Module 3: Malware Analysis



Enter Transformers - The Next Leap Forward

Transformers, originally designed for natural language processing (NLP), have proven to be exceptionally powerful for
malware analysis.

Why Transformers? The Power of the Attention Mechanism:

e Unlike RNNs which process data sequentially, the attention mechanism allows a Transformer to weigh the
importance of all parts of the input simultaneously.

e It can identify critical relationships between distant parts of a file or a long sequence of API calls.

e Example: It can connect a suspicious function call at the beginning of an execution trace to a data exfiltration attempt
much later on.

Application: Transformers can be applied to both static analysis (treating bytes as "words") and dynamic analysis (treating
API calls as "tokens" in a sentence).

Key Research:

e "MalBERT: A Transformer-based approach for Malware Detection" (U-Sardar et al., 2021): One of the early works
demonstrating how a BERT-like model can be effectively pre-trained and fine-tuned for malware classification from raw
byte sequences.

Module 3: Malware Analysis



Key Shift #3 Robustness Matters

Conclusion and Future Outlook

The Future is Autonomous and Proactive

e Summary: Al, and particularly Deep Learning, has fundamentally shifted malware analysis from a manual, reactive
process to an automated and predictive one. Transformers represent the current state-of-the-art, offering a deeper
understanding of code and behavior.

e  Future Trends:

o  Graph Neural Networks (GNNs): Modeling programs as graphs (e.g., control-flow graphs) and using GNNs to
analyze them is a promising new direction.
Multimodal Analysis: Combining static, dynamic, and network signals into a single, powerful Al model.
Al-Driven Response: Moving beyond detection to automated response, where Al can generate signatures or
even patch systems in real-time.

The cat-and-mouse game between attackers and defenders continues, but Al provides defenders with an unprecedented
advantage to automate, scale, and predict.

Module 3: Malware Analysis



What's Still Hard A\

e Adversarial Attacks: Malware authors are now actively designing samples to fool Al
detectors. By making subtle, calculated changes to a file, they can cause a model to
misclassify it as benign.

e Explainability (XAl): Deep learning models are often "black boxes." It is extremely
difficult to understand why a model flagged a file as malicious, which complicates
incident response and forensics.

e Concept Drift: The malware landscape evolves constantly. Al models trained on
yesterday's threats may become less effective against tomorrow's. This requires a
robust infrastructure for continuous retraining and evaluation.

e High Computational Cost: Training and deploying large-scale Transformer models
requires significant computational resources and expertise, making it inaccessible for
some organizations.

Module 3: Malware Analysis



Module 4

Side-Channel & OT

Hardware/ICS/loT security with ML pipelines

Module 4: Side-Channel & OT




The Invisible Battlefield - Understanding the Threats

Side-Channel Attacks (SCA):

e These attacks don't exploit software bugs. Instead, they exploit physical information leakage from a
device as it operates.

e Examples: Power consumption (Power Analysis), electromagnetic (EM) emissions, timing information, and
even acoustic signals can reveal secret data like cryptographic keys.

Operational Technology (OT) / ICS / loT Security:

e OT/ICS: The hardware and software that monitor and control physical industrial processes (e.g., power
grids, manufacturing plants).

e Challenges: These systems are often legacy, designed for reliability not security, and have real-time
constraints. They are increasingly connected to IT networks, expanding their attack surface.

e |oT Convergence: Billions of loT devices now bridge the physical and digital worlds, making them prime
targets for both traditional cyber-attacks and physical attacks like SCAs.

Module 4: Side-Channel & OT



The Al Revolution in Physical Security

Before Al / Traditional Methods:

e SCA: Relied on manual, expert-driven statistical analysis like Differential Power Analysis (DPA). This required deep
knowledge of the hardware and was slow, requiring thousands of measurements (traces).

e  OTI/ICS Security: Relied on network segmentation and rule-based systems (like IDS signatures), which were blind to
zero-day attacks and anomalous operational behavior.

The Al Paradigm Shift:

e Machine Learning (ML), and especially Deep Learning, automates the detection process by learning complex
patterns directly from raw sensor and signal data.

e Key Advantage: Al eliminates the need for manual feature engineering. The model itself discovers what a "malicious’
power trace or an "anomalous" sensor reading looks like, making detection faster, more scalable, and more effective.

Module 4: Side-Channel & OT



ML Pipelines for Side-Channel Attack (SCA) Detection

Learning to "See" Leaking Secrets
Deep Learning models, particularly Convolutional Neural Networks (CNNs), are highly effective at breaking cryptographic implementations.

The ML Pipeline for SCA:

1. Data Collection (Profiling): Capture thousands of power or EM traces from a target device while it performs cryptographic operations

with a known key.
2. Model Training: Train a CNN directly on the raw traces. The model learns to correlate subtle patterns in the signal with the specific

cryptographic key bit being processed (e.g., classifying a trace as corresponding to a '0' or a '1").
3. Attack Phase: Use the trained model to predict the secret key, one bit at a time, from a new, small set of traces from a victim device.

Key Research & Impact:

e  Deep learning has drastically reduced the number of traces needed for a successful attack, making SCAs far more practical.
° Key Conferences: Research in this area is heavily published at CHES (Conference on Cryptographic Hardware and Embedded
Systems) and USENIX Security.
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ML Pipelines for OT/ICS Anomaly Detection

Learning the "Heartbeat" of Industrial Processes
OT networks are highly predictable. Al excels at learning this normal behavior and flagging any deviation.
The ML Pipeline for OT Security:

1. Baseline Creation: An Al model (often an LSTM or Autoencoder) is trained on historical network
and sensor data from the live OT environment. It learns the normal "rhythm" of operations; which
sensors talk to which controllers, what their value ranges are, and in what sequence.

2. Anomaly Detection: The trained model monitors the live system in real-time. Any behavior that
deviates significantly from the learned baseline is flagged as an anomaly.

3. Alerting: This could be an unknown device connecting, a sensor providing physically impossible
values, or a controller receiving an unexpected command; all potential indicators of a compromise
like Stuxnet.

Module 4: Side-Channel & OT



Significant Progress and Real-World Success

How Al is Making a Measurable Difference
In Side-Channel Analysis:

e Breaking Countermeasures: Deep learning models have successfully defeated hardware countermeasures (like
masking and shuffling) that were designed to protect against traditional statistical attacks.

e Reduced Attack Cost: The number of required traces has dropped from tens of thousands to just a few hundred in
many cases, lowering the barrier to entry for attackers.

In OT/ICS/IoT Security:

e Early Threat Detection: ML-based systems have successfully detected both cyber-attacks and operational failures in
real-world deployments before significant damage could occur.

e Device Fingerprinting: Al models can automatically identify and classify loT and ICS devices on a network simply by
observing their network traffic patterns, helping to identify unauthorized or rogue devices.

e Botnet Detection: Models can identify the synchronized, anomalous communication patterns characteristic of loT
botnets like Mirai.

Module 4: Side-Channel & OT



Agentic SecOps

CTIl — detections, playbooks, orchestration, MCP-style connectors

Module 5: Agentic SecOps




The Traditional SecOps Challenge

The Problem: Human Scale vs. Machine Scale

Traditional Security Operations Centers (SOCs) are overwhelmed. Analysts face a constant battle
against a high volume of threats with limited resources.

Key Challenges:

e Alert Fatigue: Security tools generate thousands of alerts daily, most of which are false
positives. Analysts spend more time triaging than investigating.

e Manual Processes: Critical tasks like threat hunting, alert enrichment, and initial response are
often manual, slow, and prone to human error.

e Skills Gap: There is a global shortage of highly skilled security analysts.

e Slow Response Times: High Mean Time to Detect (MTTD) and Mean Time to Respond
(MTTR) give attackers a significant advantage.

Module 5: Agentic SecOps



From Anomaly Detection to Autonomous Reasoning

The introduction of Al has been a game-changer for security operations, moving beyond simple
automation.

Phase 1: Early Al/ML

e Focused on anomaly detection by learning a baseline of "normal" behavior.
e Helped reduce noise but still required significant human interpretation.

Phase 2: The Generative Al & LLM Breakthrough

e Large Language Models (LLMs) introduced the ability to understand, reason, and generate
human-like text and code.

e This enabled a paradigm shift from just detecting anomalies to:
o Understanding the context of an alert.
o Reasoning about the steps needed to investigate and respond.
o Generating new detection rules and response plans on the fly.

Module 5: Agentic SecOps



What is Agentic SecOps?

The Al Analyst: Autonomous Agents in the SOC

An Al Agent is an autonomous system that can perceive its environment, reason, create a plan, and
execute actions to achieve a specific goal. In SecOps, the goal is to detect and neutralize threats.

The Agentic OODA Loop:

1.  Observe: Ingests data from various sources (SIEM alerts, CTI feeds, EDR logs).

2. Orient: Enriches and contextualizes the data. Understands the "who, what, where, and when" of an
event.

3. Decide: Determines the severity of the threat and formulates a multi-step response plan (a dynamic
playbook).

4. Act: Executes the plan by interacting with other security tools via APIs (e.g., isolate host, block IP).

This is not just automation; it is autonomous decision-making.
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The Agentic Workflow: CTlI — Detections

Closing the Gap from Intelligence to Action

One of the biggest challenges in SecOps is operationalizing Cyber Threat Intelligence (CTI). Al agents automate this entire
process.

The Workflow:

1.  Consume CTI: The Al agent reads unstructured CTI reports (PDFs, blog posts, security advisories) and structured
feeds (STIX/TAXII).
2. Reason & Extract: Using Natural Language Understanding (NLU), the agent extracts key information:
o Indicators of Compromise (IoCs): IPs, domains, file hashes.
o  Tactics, Techniques, and Procedures (TTPs) mapped to the MITRE ATT&CK framework.
3. Generate Detections: The agent automatically translates the extracted TTPs and loCs into detection rules for various
platforms:
o  SIEM queries (e.g., Splunk, Microsoft Sentinel)
o  YARA rules for malware scanning
o  Sigma rules for generic log analysis

This transforms a manual process that took hours or days into an automated task that takes seconds.
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The Agentic Workflow: Detections — Playbooks

Dynamic Response Generation
When an Al-generated detection rule fires, the agent begins the investigation and response phase.
The Workflow:

1. Alert Ingestion: Receives an alert from a SIEM or EDR.
2. Autonomous Enrichment: The agent automatically gathers context:
o  User Info: Who is the user? What is their role?
o  Asset Info: What is the device? Is it a critical server?
o  Threat Intel: Does the IP or hash match any known threats?
3. Dynamic Playbook Generation: Instead of using a rigid, pre-defined playbook, the agent reasons about the alert
and creates a custom plan.
o  Example: For a suspicious login, the playbook might be: "1. Query EDR for process history. 2. Check user's
recent geo-logins. 3. If anomalous, disable user account."
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The Agentic Workflow: Orchestration & Connectors

Executing the Plan Across the Security Ecosystem
Once a plan is created, the agent must execute it.

e Orchestration: The agent acts as a central coordinator, managing the sequence of actions across multiple, disparate
security tools.
e MCP-style Connectors:
o  The agent uses a library of standardized connectors (APIs) to interact with the entire security stack, regardless
of the vendor.
o  This is the "hands and feet" of the agent, allowing it to take real action.
e Example Actions:
o EDR (CrowdStrike, SentinelOne): Isolate host, retrieve file, run memory scan.
o  Firewall (Palo Alto, Fortinet): Block an IP address or domain.
o Identity Provider (Okta, Azure AD): Disable a user account, force MFA re-authentication.
o  Cloud (AWS, GCP): Revoke temporary credentials, snapshot a VM.
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Significant Progress & Key Research

The Rise of the Al-Native SOC

Agentic SecOps is no longer theoretical. Major security vendors are building their next-generation platforms around this
concept.

e Real-World Impact:
o  Dramatic reduction in alert triage time (from hours to minutes).
o  Significant improvement in MTTD and MTTR.
o  Automation of 80%+ of Tier-1 and Tier-2 analyst tasks, freeing up humans for high-level threat hunting.
e Industry Examples & Sources:
o  Microsoft Security Copilot: Integrates a powerful LLM across the entire Microsoft security suite.
o Palo Alto Networks Cortex XSIAM: Billed as an "autonomous security platform" that replaces traditional
SIEM.
o  CrowdStrike Charlotte Al: A generative Al assistant built into the Falcon platform to automate queries and
investigations.
e Key Concept: The idea of an "Al-native SOC" is gaining traction, where Al is not just an add-on but the central
operating system for security.
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Trust, Reliability, and Security of the Agent Itself

e Hallucinations & Reliability: LLMs can make mistakes ("hallucinate"). An agent autonomously locking out
the CEO or shutting down a critical production server based on a flawed inference is a major risk.

e Human-in-the-Loop: Finding the right balance is critical. Which actions can be fully automated, and which
require human approval? This "human-in-the-loop" design is a key area of active research and
development.

e Security of the Al Agent: A compromised Al agent would be the ultimate insider threat, holding the "keys to
the kingdom." Securing the agent's models, prompts, and API keys is a paramount security challenge.

e API & Tool Integration: The vision of seamless "MCP-style connectors" is powerful but difficult to
implement. Not all security tools have robust, well-documented APIs, and maintaining these integrations is a
significant engineering effort.
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e Future Outlook:
o The role of the human security analyst will evolve from a hands-on "operator" to
a "supervisor" or "Al fleet manager."

o Humans will focus on:
m Handling the complex edge cases that Al cannot.
m Training and fine-tuning the Al models.
m Performing high-level, creative threat hunting.
m Designing the strategic goals for the Al security agents.

The ultimate goal is a resilient, self-healing security infrastructure where Al agents
autonomously defend the enterprise.
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Module 6

Security of Al Systems

Guardrails, sandboxing, red teaming, governance
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Welcoming The New Attack Surface

Why Securing Al is a Fundamentally New Challenge

Al and Large Language Models (LLMs) introduce novel vulnerabilities beyond traditional software security. We are no
longer just protecting code; we are protecting the model's integrity, data, and decision-making process.

The New Threat Landscape:

e  Prompt Injection: Tricking an LLM into ignoring its original instructions and executing a malicious command.
This is the #1 vulnerability according to OWASP for LLM Applications.

e Data Poisoning: Corrupting the model's training data to create backdoors, introduce biases, or degrade its
performance.

e Model Theft: Stealing the proprietary weights and architecture of a trained model, which is often a company's
most valuable intellectual property.

e Insecure Output Handling: When the Al's output (e.g., generated code) is passed directly to backend systems
without sanitization, leading to vulnerabilities like XSS or SQL injection.
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The First Line of Defense: Guardrails

Implementing Basic Rules and Filters

Guardrails are a set of safety controls and policies built around an Al model to control its inputs and outputs. They are
the most basic and essential layer of Al security.

Types of Guardrails:

Input Validation: Filtering prompts for malicious keywords, scripts, or known "jailbreak" patterns.

e Topical Guardrails: Restricting the model from engaging with harmful, unethical, or off-topic subjects (e.qg.,
hate speech, illegal activities).

e  Output Sanitization: Ensuring the model's responses do not contain sensitive information, harmful content, or
executable code before being shown to the user or passed to another system.

Limitation: Guardrails are rule-based and can often be bypassed by creative or obfuscated prompts (adversarial
prompting). They are necessary but not sufficient.
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Containing the Damage: Sandboxing Al Agents

Limiting the "Blast Radius™

As Al agents gain the ability to use tools and execute code (Agentic Al), they must be treated as untrusted processes.
Sandboxing is the practice of isolating an Al agent in a restricted execution environment with limited permissions.
How It Works:

1. Restricted Environment: The agent runs in a container (e.g., Docker, gVisor) with no access to the host
system or internal network.

2. Limited Tool Access: The agent is only granted API keys and permissions for the specific, low-privilege tools it
needs to complete a task.

3.  Strict Monitoring: All actions taken by the agent (API calls, code execution) are heavily logged and monitored
for suspicious behavior.

The Goal: If an attacker successfully hijacks the agent via prompt injection, the sandbox ensures the damage is
contained and does not spread to the wider infrastructure.
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Proactive Defense: Al Red Teaming

Finding Vulnerabilities Before Attackers Do

Al Red Teaming is the process of simulating adversarial attacks to proactively discover a model's vulnerabilities,
biases, and failure modes.

The Process:

e Adedicated team of humans (and now, other Als) acts as attackers.

e They systematically try to "jailbreak" the model by crafting adversarial prompts to:
o  Bypass its guardrails.

Elicit harmful or biased responses.

Trick it into revealing confidential information from its training data.

Hijack its tool-using capabilities.

O O O

The findings are then used to improve the model's training, fine-tuning, and guardrails.

Module 6: Security of Al Systems



Using Al to Test Al

The emergence of powerful LLMs has revolutionized the red teaming process itself, moving it from a purely manual
effort to a scalable, automated one.

How Al Accelerates Red Teaming:

e Automated Jailbreak Generation: An LLM can be prompted to generate thousands of creative and diverse
adversarial prompts, testing a model's defenses far more exhaustively than a human team could.

e Discovering Novel Attack Vectors: By using one Al to attack another, red teams have discovered new and
non-obvious ways to bypass safety filters.

Key Research & Sources:

e "Red Teaming Language Models to Reduce Harms: Methods, Scaling Behaviors, and Lessons Learned"

(DeepMind, 2022): A foundational paper detailing the methods and effectiveness of using humans and models
for red teaming.

° Many organizations, including Google, Meta, and OpenAl, now run continuous, automated red teaming
pipelines where Al models constantly test each other for new vulnerabilities.
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Establishing Order: Al Governance

Creating a Framework for Trust and Accountability

Al Governance is the framework of rules, policies, and processes for managing the risks and ensuring the responsible
development and deployment of Al systems.

Key Components:

1.

Risk Management Frameworks: Adopting structured frameworks to identify, assess, and mitigate Al-specific
risks. The NIST Al Risk Management Framework (Al RMF 1.0) is a widely adopted standard.

Model Inventory & Bill of Materials: Maintaining a central registry of all Al models in use, their training data
sources, and their known limitations.

Access Control & Auditing: Implementing strict controls on who can access, train, or deploy models. All
Al-driven decisions and actions must be logged for forensic analysis.

Ethical Oversight: Establishing a review board to ensure Al systems are developed and used in an ethical, fair,
and transparent manner.
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Maturing from an Academic Problem to an Engineering

Discipline

The security of Al is no longer just a research topic; it is a critical focus for the entire industry.

e Standardized Frameworks:
o  NIST Al Risk Management Framework (Al RMF): Provides a comprehensive guide for governing Al

risks.
o  MITRE ATLAS (Adversarial Threat Landscape for Al Systems): A knowledge base of adversarial
tactics and techniques against Al systems, modeled after the successful ATT&CK framework.
o OWASP Top 10 for LLM Applications: Provides a clear, actionable list of the most critical security risks
for developers building with LLMs.
e Industry Collaboration: Major tech companies are collaborating on Al safety research and best practices
through consortiums like the Al Safety Institute.
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The Arms Race: Defenses vs. Evolving Attacks

Despite significant progress, many fundamental challenges remain unsolved.

e  The Inherent Vulnerability of LLMs: At their core, LLMs are designed to follow instructions, making them
fundamentally susceptible to clever prompt injection. A perfect, universal defense may not be possible.

e  Scalability of Evaluation: Manually red teaming every new or fine-tuned model is not scalable. Automated
evaluation methods are still an active and complex area of research.

e Model Theft and Watermarking: While techniques exist to "watermark" a model's outputs to trace its origin,
robustly protecting a model's weights from a determined attacker is extremely difficult.

e Al Supply Chain Security: How do you trust the pre-trained models and datasets you build upon? Research
has shown that models can be trained with hidden "sleeper agent" backdoors that only activate with a specific
trigger.

o  Reference: "Sleeper Agents: Training Deceptive LLMs that Persist Through Safety Training" (Anthropic,
2024).
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Towards a "Zero Trust" Architecture for Al

e  Summary: Securing Al systems requires a new, multi-layered approach that combines proactive defenses (red
teaming), real-time controls (guardrails, sandboxing), and a strong foundation of governance.
e  Future Outlook:
o Al Security Posture Management (Al-SPM): New tools will emerge to continuously scan, evaluate, and
report on the security posture of an organization's entire fleet of Al models.
o  Shift to a Secure Al Development Lifecycle (Al SDLC): Security will be integrated into every stage of
the model lifecycle, from data sourcing and training to deployment and monitoring.
o  "Zero Trust" for Agents: Every action taken by an Al agent will be treated as untrusted, requiring
independent verification and operating under the principle of least privilege.
o Development of More Robust Models
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The Model Context Protocol (MCP) allows
applications to provide context for LLMs in a
standardized way, separating the concerns of
providing context from the actual LLM
interaction.
o  MCP Server: Expose resources, prompts
and tools
o MCP Client: Can connect to the MCP
Server

D ByteByteGo




MCPGhidra

"mcpServers": {
"ghidra": {
"command": "python",

"args": [
"/ABSOLUTE_PATH_TO/bridge_mcp_ghidra.py", <

"--ghidra-server", .
"http://127.0.0.1:8080/" (

) ghidraMCP
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New Frontiers of
Cybersecurity with
Al | Workshop

<shop
Modules
Module 1: Software Security

Module 2: Runtime

Monitoring
Module 3: Malware Analysis

Module 4: Side-Channel &
ICS/loT

Module 5: Agentic SecOps &

Automation

Module 6: Guardrails &
Security of Agentic Al

@ﬂulﬂ core module Al3Sec

Software Security: Program Understanding,
Vulnerability Discovery and LLM-Guided
Fuzzing

Cross-arch function similarity
LLM-assisted decompilation
Taint (static/dynamic/hybrid)

LLM-guided fuzzing (seeds/grammars, NL oracles)

Outcome: Build semantic visibility into
code, automate vulnerability discovery, and
prioritize findings.

Module 2 ore mod Al>Sec

Runtime Monitoring in an Encrypted World:
Logs, Telemetry & Network Flows

Log anomaly (sequence models)
Cross-source correlation + Encrypted traffic inference
Flow/timing fingerprinting

DFIR timelines & reporting

Outcome: Detect and explain sophisticated
attacks using logs-as-language and
payload-blind flow analysis.

Module 3 e module Al>Sec

Malware Analysis with Deep Learning &
Transformers

Byte/IR embeddings (PE/ELF)
Syscall/behavior sequences
Family clustering/linkage
Packing/obfuscation robustness

LLM assist for triage

Outcome: Classify, cluster, and attribute
malware using learned representations of
static and dynamic behavior.

Moddg

Side-Channel, Hardware, and ICS/loT
Security

CNN/Transformer SCA pipelines
Masking/shielding/randomization
ICS anomaly detection * Device identity & attestation

Wireless/RF fingerprinting

Outcome: Apply ML to
power/EM/timing/RF streams and secure

industrial/embedded environments.

Agentic SecOps & Automation

Agent tool-use & approvals

CTl > ATT&CK/TTPs > detections
Playbooks/orchestration budgets
BAS/purple teaming with LLMs

Auditability & connectors

Outcome: Automate high-volume tasks
safely while keeping analysts in control.

Sec>Al

Guardrails & Security of Agentic Al Systems
(Model/LLM Security)

Prompt/tool injection & jailbreaks

Data poisoning & deceptive fine-tuning
Model/data exfiltration

Least-privilege tools & isolation

Red teaming & governance

Outcome: Secure models/agents and limit

the blast radius of automated actions.




Wrap up!'!

All materials will be available soon (promise soon @) at:
ret2ai.github.io

Stay in touch BEA:
s.salimi@sharif.edu
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